Олимпиадные задачи из источника «1959 год» - сложность 1 с решениями
Дан выпуклый четырёхугольник<i>ABCD</i>. Середины сторон<i>AB</i>и<i>CD</i>обозначим соответственно через<i>K</i>и<i>M</i>, точку пересечения<i>AM</i>и<i>DK</i>— через<i>O</i>, точку пересечения<i>BM</i>и<i>CK</i>— через<i>P</i>. Доказать, что площадь четырёхугольника<i>MOKP</i>равна сумме площадей треугольников<i>BPC</i>и<i>AOD</i>.
Заметим, что если перевернуть лист, на котором написаны цифры, то цифры 0, 1, 8 не изменятся, 6 и 9 поменяются местами, остальные потеряют смысл. Сколько существует девятизначных чисел, которые при переворачивании листа не изменяются?
Даны две бочки бесконечно большой емкости. Можно ли, пользуясь двумя ковшами емкостью2 -$\sqrt{2}$и$\sqrt{2}$, перелить из одной в другую ровно 1 литр?
Пусть<i>a</i>и<i>b</i>— целые числа. Напишем число<i>b</i>справа от числа<i>a</i>. Если число<i>a</i>чётное, то разделим его на 2, если оно нечётное, то сначала вычтем из него единицу, а потом разделим его на 2. Получившееся число<i>a</i><sub>1</sub>напишем под числом<i>a</i>. Справа от числа<i>a</i><sub>1</sub>напишем число 2<i>b</i>. С числом<i>a</i><sub>1</sub>проделаем ту же операцию, что и с числом<i>a</i>, и, получив число<i>a</i><sub>2</sub>, напишем его под числом<i>a</i><sub>1</sub>. Справа от числа<i>a</i><sub>2</sub>напишем число 4<i>b&l...