Олимпиадные задачи из источника «8 класс, 2 тур» для 3-10 класса - сложность 3 с решениями

100 чисел, среди которых есть положительные и отрицательные, выписаны в ряд. Подчеркнуто, во-первых, каждое положительное число, во-вторых, каждое число, сумма которого со следующим положительна, и, в-третьих, каждое число, сумма которого с двумя следующими положительна. Может ли сумма всех подчеркнутых чисел оказаться отрицательной? Равной нулю?

64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на двух диагоналях, равна 112. Числа, расположенные симметрично относительно любой диагонали, равны. Докажите, что сумма чисел в любой строке меньше 518.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка