Олимпиадные задачи из источника «10 класс, 1 тур» - сложность 3-4 с решениями

В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с пятого знака после запятой (то есть взято приближение α с недостатком с точностью до 0,0001). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

В треугольник вписан квадрат так, что две его вершины лежат на основании, а две другие вершины — на боковых сторонах треугольника. Доказать, что сторона квадрата меньше 2<i>r</i>, но больше$\sqrt{2}$<i>r</i>, где<i>r</i>— радиус окружности, вписанной в треугольник.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка