Олимпиадные задачи из источника «10 класс, 1 тур» - сложность 2-3 с решениями

<i>A</i> – вершина правильного звёздчатого пятиугольника. Ломаная <i>AA'BB'CC'DD'EE'</i> является его внешним контуром. Прямые <i>AB</i> и <i>DE</i> продолжены до пересечения в точке <i>F</i>. Докажите, что многоугольник <i>ABB'CC'DED'</i> равновелик четырёхугольнику <i>AD'EF</i>.

Докажите, что многочлен вида  <i>x</i><sup>200</sup><i>y</i><sup>200</sup> + 1  нельзя представить в виде произведения многочленов от одного только <i>x</i> и одного только <i>y</i>.

Доказать неравенство<div align="CENTER"> $\displaystyle {\frac{2-\overbrace{\sqrt{2+\sqrt{2+\dots+\sqrt{2}}}}^{n{\rm раз}}}{2-\underbrace{\sqrt{2+\sqrt{2+\dots+\sqrt{2}}}}_{n-1{\rm раз}}}}$ > $\displaystyle {\textstyle\frac{1}{4}}$. </div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка