Олимпиадные задачи из источника «1947 год» для 10 класса - сложность 3 с решениями
Внутри квадрата<i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub>лежит выпуклый четырёхугольник<i>A</i><sub>5</sub><i>A</i><sub>6</sub><i>A</i><sub>7</sub><i>A</i><sub>8</sub>. Внутри<i>A</i><sub>5</sub><i>A</i><sub>6</sub><i>A</i><sub>7</sub><i>A</i><sub>8</sub>выбрана точка<i>A</i><sub>9</sub>. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника.
Из двухсот чисел: 1, 2, 3, ..., 199, 200 выбрали одно число, меньшее 16, и ещё 99 чисел.
Докажите, что среди выбранных чисел найдeтся два таких, одно из которых делится на другое.
Вычислить с пятью десятичными знаками (то есть с точностью до 0,00001) произведение: <img align="MIDDLE" src="/storage/problem-media/76542/problem_76542_img_2.gif">