Олимпиадные задачи из источника «1946 год» для 10 класса - сложность 2 с решениями
В шахматном турнире участвовали ученики 9 и 10 классов. Десятиклассников было в 10 раз больше, чем девятиклассников, и они набрали вместе в 4,5 раза больше очков, чем все девятиклассники. Сколько очков набрали девятиклассники?
Доказать, что для любого натурального<i>n</i>справедливо соотношение:<div align="CENTER"> $\displaystyle {\frac{(2n)!}{n!}}$ = 2<sup>n . </sup>(2<i>n</i> - 1)!! </div>
В пространстве даны две пересекающиеся плоскости$\alpha$и$\beta$. На линии их пересечения дана точка<i>A</i>. Доказать, что из всех прямых, лежащих в плоскости$\alpha$и проходящих через точку<i>A</i>, наибольший угол с плоскостью$\beta$образует та, которая перпендикулярна к линии пересечения плоскостей$\alpha$и$\beta$.
Доказать, что в произведении (1 – <i>x + x</i>² – <i>x</i>³ + ... – <i>x</i><sup>99</sup> + <i>x</i><sup>100</sup>)(1 + <i>x + x</i>² + <i>x</i>³ + ... + <i>x</i><sup>99</sup> + <i>x</i><sup>100</sup>) после раскрытия скобок и приведения подобных членов не остаётся членов, содержащих <i>x</i> в нечётной степени.