Олимпиадные задачи из источника «2024 год» - сложность 2 с решениями

Коля пришёл в музей современного искусства и увидел квадратную картину в раме необычной формы, состоящей из 21 равного треугольника. Коля заинтересовался, чему равны углы этих треугольников. Помогите ему их найти.<img src="/storage/problem-media/67285/problem_67285_img_2.png">

Расставьте в клетки квадрата 3×3 различные целые положительные числа, не большие 25, так, чтобы в любой паре соседних по стороне клеток одно число делилось на другое.

Миша сложил из восьми брусков куб (см. рис.). Все бруски имеют один и тот же объём, серые бруски одинаковые и белые бруски тоже одинаковые. Какую часть ребра куба составляют длина, ширина и высота белого бруска?<img src="/storage/problem-media/67281/problem_67281_img_2.png">

В сумме П,Я + Т,Ь + Д,Р + О,Б + Е,Й все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно? Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.

Из прямоугольника 3×6 вырезали одну клетку (см. рис.). «Пришейте» эту клетку в другом месте так, чтобы получилась фигура, которую можно разрезать на две одинаковых.<img src="/storage/problem-media/67279/problem_67279_img_2.png">

У Кати и Маши расчёски одинаковой длины. У каждой расчёски все зубчики одинаковые, а расстояния между зубчиками равны ширине зубчика. В Катиной расчёске 11 зубчиков (см. рис.). Сколько зубчиков в Машиной расчёске, если они в пять раз уже зубчиков Катиной расчёски?<img src="/storage/problem-media/67278/problem_67278_img_2.png">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка