Олимпиадные задачи из источника «Кировская ЛМШ» для 8 класса - сложность 2 с решениями
В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?
В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?
Пароход шёл от Нижнего Новгорода до Астрахани 5 суток, а обратно – 7 суток. Сколько дней плывут плоты от Нижнего Новгорода до Астрахани?
По кругу расставлены нули и единицы (и те и другие присутствуют). Каждое число, у которого два соседа одинаковы, заменяют на ноль, а остальные числа – на единицы, и такую операцию проделывают несколько раз.
a) Могут ли все числа стать нулями, если их 13 штук? б) Могут ли все числа стать единицами, если их 14 штук?
В квадрате 25×25 стоят числа 1 и –1. Вычислили все произведения этих чисел по строкам и по столбцам.
Доказать, что сумма этих произведений не равна нулю.
На клетчатой бумаге нарисован замкнутый путь (по линиям сетки). Доказать, что он имеет чётную длину (сторона клетки имеет длину 1).
Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.
На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно обеих главных диагоналей.
Докажите, что одна из шашек стоит в центральной клетке.