Олимпиадные задачи из источника «1987 год» - сложность 4 с решениями
В некотором царстве, территория которого имеет форму квадрата со стороной 2 км, царь решает созвать всех жителей к 7 ч вечера к себе во дворец на бал. Для этого он в полдень посылает с поручением гонца, который может передать любое указание любому жителю, который в свою очередь может передать любое указание любому другому жителю и т.д. Каждый житель до поступления указания находится в известном месте (у себя дома) и может передвигаться со скоростью 3 км/ч в любом направлении (по прямой). Доказать, что царь может организовать оповещение так, чтобы все жители успели прийти к началу бала.
а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два числа <i>x</i> и <i>y</i>, что 0 ≤ <img width="38" height="35" align="MIDDLE" border="0" src="/storage/problem-media/79520/problem_79520_img_2.gif"> ≤ 1.
б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?