Олимпиадные задачи из источника «выпуск 3» - сложность 3 с решениями
выпуск 3
НазадПусть <i>p</i> – произвольное вещественное число. Найдите все такие <i>x</i>, что сумма кубических корней из чисел 1 – <i>x</i> и 1 + <i>x</i> равна <i>p</i>.
а) Прямоугольная таблица из <i>m</i> строк и <i>n</i> столбцов заполнена числами. Переставим числа в каждой строке в порядке возрастания. Если после этого переставить числа в каждом столбце в порядке возрастания, то в каждой строке они по-прежнему будут стоять в порядке возрастания. Докажите это.
б) Что будет, если действовать в другом порядке: в первоначальной таблице сначала переставить числа по возрастанию в столбцах, а потом – в строках: получится ли в результате та же самая таблица, что и в первом случае, или другая?