Олимпиадные задачи из источника «выпуск 5» для 2-9 класса - сложность 3 с решениями

В множестве, состоящем из <i>n</i> элементов, выбрано 2<sup><i>n</i>–1</sup> подмножеств, каждые три из которых имеют общий элемент.

Докажите, что все эти подмножества имеют общий элемент.

Для любого натурального числа <i>n</i>, большего единицы, квадрат отношения произведения первых <i>n</i> нечётных чисел к произведению первых <i>n</i> чётных чисел больше числа <sup>1</sup>/<sub>4<i>n</i></sub>, но меньше числа <sup>3</sup>/<sub>8<i>n</i></sub>. Докажите это.

В угол вписаны две окружности; одна из них касается сторон угла в точках <i>K</i><sub>1</sub> и <i>K</i><sub>2</sub>, а другая — в точках <i>L</i><sub>1</sub> и <i>L</i><sub>2</sub>. Докажите, что прямая <!-- MATH $K_{1}L_{2}$ --> <i>K</i><sub>1</sub><i>L</i><sub>2</sub> высекает на этих двух окружностях равные хорды.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка