Олимпиадные задачи из источника «параграф 9. Четырехугольник» для 3-11 класса - сложность 1-2 с решениями
параграф 9. Четырехугольник
НазадДан выпуклый четырёхугольник и точка <i>M</i> внутри него. Доказать, что сумма расстояний от точки <i>M</i> до вершин четырёхугольника меньше суммы попарных расстояний между вершинами четырёхугольника.
Угол <i>A</i>четырехугольника <i>ABCD</i>тупой; <i>F</i> — середина стороны <i>BC</i>. Докажите, что 2<i>FA</i><<i>BD</i>+<i>CD</i>.
Докажите, что сумма расстояний от произвольной точки до трех вершин равнобедренной трапеции больше расстояния от этой точки до четвертой вершины.
Докажите, что если два противоположных угла четырехугольника тупые, то диагональ, соединяющая вершины этих углов, короче другой диагонали.
В трапеции <i>ABCD</i>углы при основании <i>AD</i>удовлетворяют неравенствам $\angle$<i>A</i><$\angle$<i>D</i>< 90<sup><tt>o</tt></sup>. Докажите, что тогда <i>AC</i>><i>BD</i>.
В четырехугольнике <i>ABCD</i>углы <i>A</i>и <i>B</i>равны, a $\angle$<i>D</i>>$\angle$<i>C</i>. Докажите, что тогда <i>AD</i><<i>BC</i>.