Олимпиадные задачи из источника «параграф 2. Четырехугольники» для 5-9 класса - сложность 2 с решениями
параграф 2. Четырехугольники
НазадНа сторонах <i>BC</i>и <i>AD</i>четырехугольника <i>ABCD</i>взяты точки <i>M</i>и <i>N</i>так, что <i>BM</i>:<i>MC</i>=<i>AN</i>:<i>ND</i>=<i>AB</i>:<i>CD</i>. Лучи <i>AB</i>и <i>DC</i>пересекаются в точке <i>O</i>. Докажите, что прямая <i>MN</i>параллельна биссектрисе угла <i>AOD</i>.
В четырехугольнике <i>ABCD</i>стороны <i>AB</i>и <i>CD</i>равны, причем лучи <i>AB</i>и <i>DC</i>пересекаются в точке <i>O</i>. Докажите, что прямая, соединяющая середины диагоналей, перпендикулярна биссектрисе угла <i>AOD</i>.
Угол между сторонами <i>AB</i>и <i>CD</i>четырехугольника <i>ABCD</i>равен $\varphi$. Докажите, что <i>AD</i><sup>2</sup>=<i>AB</i><sup>2</sup>+<i>BC</i><sup>2</sup>+<i>CD</i><sup>2</sup>- 2(<i>AB</i><sup> . </sup><i>BC</i>cos <i>B</i>+<i>BC</i><sup> . </sup><i>CD</i>cos <i>C</i>+<i>CD</i><sup> . </sup><i>AB</i>cos$\varphi$).