Олимпиадные задачи из источника «параграф 2. Четырехугольники» для 2-9 класса - сложность 3 с решениями
параграф 2. Четырехугольники
НазадСередины <i>M</i>и <i>N</i>диагоналей <i>AC</i>и <i>BD</i>выпуклого четырехугольника <i>ABCD</i>не совпадают. Прямая <i>MN</i>пересекает стороны <i>AB</i>и <i>CD</i>в точках <i>M</i><sub>1</sub>и <i>N</i><sub>1</sub>. Докажите, что если <i>MM</i><sub>1</sub>=<i>NN</i><sub>1</sub>, то <i>AD</i>|<i>BC</i>.
Два различных параллелограмма <i>ABCD</i>и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub>с соответственно параллельными сторонами вписаны в четырехугольник <i>PQRS</i>(точки <i>A</i>и <i>A</i><sub>1</sub>лежат на стороне <i>PQ</i>, <i>B</i>и <i>B</i><sub>1</sub> — на <i>QR</i>и т. д.). Докажите, что диагонали четырехугольника параллельны сторонам параллелограммов.
Докажите, что биссектрисы углов выпуклого четырехугольника образуют вписанный четырехугольник.