Олимпиадные задачи из источника «глава 5. Треугольники» для 11 класса - сложность 4 с решениями

На сторонах <i>BC</i>,<i>CA</i>,<i>AB</i>треугольника <i>ABC</i>взяты точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>,<i>C</i><sub>1</sub>. Докажите, что<div align="CENTER"> $\displaystyle {\frac{AC_1}{C_1B}}$<sup> . </sup>$\displaystyle {\frac{BA_1}{A_1C}}$<sup> . </sup>$\displaystyle {\frac{CB_1}{B_1A}}$ = $\displaystyle {\frac{\sin ACC_1}{\sin C_1CB}}$<sup> . </sup>$\displaystyle {\frac{\sin BAA_1}{\sin A_1AC}}$<sup> . </sup>$\displaystyle {\frac{\sin CBB_1}{\sin B_1BA}}$. </div>

Дан треугольник <i>ABC</i>. На прямых <i>AB</i>,<i>BC</i>и <i>CA</i>взяты точки <i>C</i><sub>1</sub>,<i>A</i><sub>1</sub>и <i>B</i><sub>1</sub>, причем <i>k</i>из них лежат на сторонах треугольника и 3 -<i>k</i> — на продолжениях сторон. Пусть<div align="CENTER"> <i>R</i> = $\displaystyle {\frac{BA_1}{CA_1}}$<sup> . </sup>$\displaystyle {\frac{CB_1}{AB_1}}$<sup> . </sup>$\displaystyle {\frac{AC_1}{BC_1}}$. </div> Докажите, что: а) точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>лежат на одной прямой...

В треугольнике<i>ABC</i>проведены триссектрисы (лучи, делящие углы на три равные части). Ближайшие к стороне<i>BC</i>триссектрисы углов<i>B</i>и<i>C</i>пересекаются в точке<i>A</i><sub>1</sub>; аналогично определим точки<i>B</i><sub>1</sub>и<i>C</i><sub>1</sub>(см. рис.). Докажите, что треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>равносторонний.<div align="center"><img src="/storage/problem-media/56893/problem_56893_img_2.gif" border="1"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка