Олимпиадные задачи из источника «Вводные задачи»

Пусть <i>a</i>и <i>b</i> — длины катетов прямоугольного треугольника, <i>c</i> — длина его гипотенузы. Докажите, что:

а) радиус вписанной окружности треугольника равен (<i>a</i>+<i>b</i>-<i>c</i>)/2;

б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (<i>a</i>+<i>b</i>+<i>c</i>)/2.

Две окружности радиусов <i>R</i>и <i>r</i>касаются внешним образом (т. е. ни одна из них не лежит внутри другой). Найдите длину общей касательной к этим окружностям.

Две окружности пересекаются в точках <i>A</i>и <i>B</i>. Точка <i>X</i>лежит на прямой <i>AB</i>, но не на отрезке <i>AB</i>. Докажите, что длины всех касательных, проведенных из точки <i>X</i>к окружностям, равны.

Докажите, что из точки <i>A</i>, лежащей вне окружности, можно провести ровно две касательные к окружности, причем длины этих касательных (т. е. расстояния от <i>A</i>до точек касания) равны.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка