Олимпиадные задачи из источника «параграф 5. Две касательные, проведенные из одной точки» - сложность 3 с решениями

Даны окружность <i>S</i>и прямая <i>l</i>, не имеющие общих точек. Из точки <i>P</i>, движущейся по прямой <i>l</i>, проводятся касательные <i>PA</i>и <i>PB</i>к окружности <i>S</i>. Докажите, что все хорды <i>AB</i>имеют общую точку.

На продолжении хорды <i>KL</i>окружности с центром <i>O</i>взята точка <i>A</i>, и из нее проведены касательные <i>AP</i>и <i>AQ</i>; <i>M</i> — середина отрезка <i>PQ</i>. Докажите, что $\angle$<i>MKO</i>=$\angle$<i>MLO</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка