Олимпиадные задачи из источника «глава 23. Делимость, инварианты, раскраски» для 5-7 класса - сложность 3-4 с решениями
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик <i>A</i> прыгает через кузнечика <i>B</i>, то после прыжка он оказывается от <i>B</i> на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?
Несколько кругов одного радиуса положили на стол так, что никакие два не перекрываются. Докажите, что круги можно раскрасить в четыре цвета так, что любые два касающихся круга будут разного цвета.
Вершины правильного 2<i>n</i>-угольника <i>A</i><sub>1</sub>...<i>A</i><sub>2<i>n</i></sub> разбиты на <i>n</i> пар.
Докажите, что если <i>n</i> = 4<i>m</i> + 2 или <i>n</i> = 4<i>m</i> + 3, то две пары вершин являются концами равных отрезков.
На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев ломаной <i>особой</i>, если продолжение одного из них пересекает другое. Докажите, что число особых пар чётно.
Окружность разбита точками на 3<i>k</i> дуг: по <i>k</i> дуг длины 1, 2 и 3. Докажите, что найдутся две диаметрально противоположные точки деления.