Олимпиадные задачи из источника «параграф 6. Невыпуклые многоугольники» для 10 класса - сложность 5 с решениями

Числа$\alpha_{1}^{}$,...,$\alpha_{n}^{}$, сумма которых равна (<i>n</i>- 2)$\pi$, удовлетворяют неравенствам0 <$\alpha_{i}^{}$< 2$\pi$. Докажите, что существует<i>n</i>-угольник<i>A</i><sub>1</sub>...<i>A</i><sub>n</sub>с углами$\alpha_{1}^{}$,...,$\alpha_{n}^{}$при вершинах<i>A</i><sub>1</sub>,...<i>A</i><sub>n</sub>.

С невыпуклым несамопересекающимся многоугольником производятся следующие операции. Если он лежит по одну сторону от прямой<i>AB</i>, где <i>A</i>и <i>B</i> — несмежные вершины, то одна из частей, на которые контур многоугольника делится точками <i>A</i>и <i>B</i>, отражается относительно середины отрезка<i>AB</i>. Докажите, что после нескольких таких операций многоугольник станет выпуклым.

Чему равно наибольшее число острых углов в невыпуклом<i>n</i>-угольнике?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка