Олимпиадные задачи из источника «параграф 3. Площадь» - сложность 4-5 с решениями

На отрезке длиной 1 расположены попарно не пересекающиеся отрезки, сумма длин которых равна<i>p</i>. Обозначим эту систему отрезков<i>A</i>. Пусть<i>B</i> — дополнительная система отрезков (отрезки систем<i>A</i>и<i>B</i>не имеют общих внутренних точек и полностью покрывают данный отрезок). Докажите, что существует параллельный перенос<i>T</i>, для которого пересечение<i>B</i>и<i>T</i>(<i>A</i>) состоит из отрезков, сумма длин которых не меньше<i>p</i>(1 -<i>p</i>)/2.

В круге радиуса 16 расположено 650 точек. Докажите, что найдется кольцо с внутренним радиусом 2 и внешним радиусом 3, в котором лежит не менее 10 из данных точек.

Попарные расстояния между точками<i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>больше 2. Докажите, что любую фигуру, площадь которой меньше$\pi$, можно сдвинуть на вектор длиной не более 1 так, что она не будет содержать точек<i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>.

Назовем крестом фигуру, образованную диагоналями квадрата со стороной 1 (рис.). Докажите, что в круге радиуса 100 можно разместить лишь конечное число непересекающихся крестов. <div align="center"><img src="/storage/problem-media/58103/problem_58103_img_2.gif" border="1"></div>

Дана бесконечная клетчатая бумага и фигура, площадь которой меньше площади клетки. Докажите, что эту фигуру можно положить на бумагу, не накрыв ни одной вершины клетки.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка