Олимпиадные задачи из источника «глава 20. Принцип крайнего» для 10 класса
На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
На плоскости дано <i>n</i>точек, причем любые три из них можно накрыть кругом радиуса 1. Докажите, что тогда все <i>n</i>точек можно накрыть кругом радиуса 1.
Докажите, что многоугольник нельзя покрыть двумя многоугольниками, гомотетичными ему с коэффициентом <i>k</i>, где 0 <<i>k</i>< 1.