Олимпиадные задачи из источника «параграф 4. Наибольший треугольник» для 9 класса - сложность 4-5 с решениями

Пусть <i>O</i> — точка пересечения диагоналей выпуклого четырехугольника<i>ABCD</i>. Докажите, что если радиусы вписанных окружностей треугольников<i>ABO</i>,<i>BCO</i>,<i>CDO</i>и <i>DAO</i>равны, то<i>ABCD</i> — ромб.

Докажите, что если центр вписанной окружности четырехугольника совпадает с точкой пересечения диагоналей, то четырехугольник — ромб.

Пусть <i>O</i> — точка пересечения диагоналей выпуклого четырехугольника<i>ABCD</i>. Докажите, что если периметры треугольников<i>ABO</i>,<i>BCO</i>,<i>CDO</i>и <i>DAO</i>равны, то<i>ABCD</i> — ромб.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка