Олимпиадные задачи из источника «параграф 3. Повороты на произвольные углы» для 9 класса - сложность 3 с решениями

Треугольник<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>получен из треугольника<i>ABC</i>поворотом на угол $\alpha$($\alpha$< 180<sup><tt>o</tt></sup>) вокруг центра его описанной окружности. Докажите, что точки пересечения сторон<i>AB</i>и <i>A</i><sub>1</sub><i>B</i><sub>1</sub>,<i>BC</i>и <i>B</i><sub>1</sub><i>C</i><sub>1</sub>,<i>CA</i>и <i>C</i><sub>1</sub><i>A</i><sub>1</sub>(или их продолжений) являются вершинами треугольника, подобного треугольнику<i>ABC</i>.

Для данного треугольника<i>ABC</i>, один из углов которого больше120<sup><tt>o</tt></sup>, найдите точку, сумма расстояний от которой до вершин минимальна.

По двум прямым, пересекающимся в точке <i>P</i>, равномерно с одинаковой скоростью движутся две точки: по одной прямой — точка <i>A</i>, по другой — точка <i>B</i>. Через точку <i>P</i>они проходят не одновременно. Докажите, что в любой момент времени описанная окружность треугольника<i>ABP</i>проходит через некоторую фиксированную точку, отличную от <i>P</i>.

На плоскости лежат две одинаковые буквы $\Gamma$. Концы коротких палочек этих букв обозначим <i>A</i>и <i>A'</i>. Длинные палочки разбиты на <i>n</i>равных частей точками<i>A</i><sub>1</sub>,...,<i>A</i><sub>n - 1</sub>;<i>A</i><sub>1</sub>',...,<i>A</i><sub>n - 1</sub>' (точки деления нумеруются от концов длинных палочек). Прямые<i>AA</i><sub>i</sub>и <i>A'A</i><sub>i</sub>' пересекаются в точке <i>X</i><sub>i</sub>. Докажите, что точки<i>X</i><sub>1</sub>,...,<i>X</i><sub>n - 1</sub>образуют выпуклый многоугольник....

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка