Олимпиадные задачи из источника «глава 5. Числа, дроби, системы счисления» для 6 класса
глава 5. Числа, дроби, системы счисления
Назад<b>4 монеты.</b>Из четырех монет одна фальшивая (она отличается по весу от настоящей, но не известно, в какую сторону). Требуется за два взвешивания на двухчашечных весах без гирь найти фальшивую монету.
а) У одного человека был подвал, освещавшийся тремя электрическими лампочками. Выключатели этих лампочек находились вне подвала, так что включив любой из выключателей, хозяин должен был спуститься в подвал, чтобы увидеть, какая именно лампочка зажглась. Однажды он придумал способ, как определить для каждого выключателя, какую именно лампочку он включает, сходив в подвал ровно один раз. Какой это способ? б) Сколько лампочек и выключателей можно идентифицировать друг с другом, если разрешается 2 раза спуститься в подвал?
Имеются весы с двумя чашами и по одной гире в 1 г, 3 г, 9 г, 27 г и 81 г. Как уравновесить груз в 61 г, положенный на чашу весов?
Представьте следующие рациональные числа в виде десятичных дробей:
а) <sup>1</sup>/<sub>7</sub>; б) <sup>2</sup>/<sub>7</sub>; в) <sup>1</sup>/<sub>14</sub>; г) <sup>1</sup>/<sub>17</sub>.