Олимпиадные задачи из источника «Интернет-ресурсы» для 6-10 класса - сложность 5 с решениями
Докажите, что следующие свойства тетраэдра равносильны:
-
все грани равновелики;
-
каждое ребро равно противоположному;
-
все грани равны;
-
центры описанной и вписанной сфер совпадают;
-
суммы углов при каждой вершине равны;
-
сумма плоских углов при каждой вершине равна 180<i><sup>o</sup> </i>;
-
развёртка тетраэдра представляет собой остроугольный треугольник, в котором проведены средние линии;
-
все грани – остроугольные треугольники с одинаковым радиусом описанной окружности;
-
ортогональная проекция тетраэдра на каждую из трёх плоскостей, параллельных двум противоположным рёбрам, – прямоугольник;
-
параллелепипед, полученный в результате проведения через противоположные рёбра трёх пар параллельных плоскостей, – прямоугольный;
11...
Точки<i> A</i>2,<i> B</i>2и<i> C</i>2– середины высот<i> AA</i>1,<i> BB</i>1и<i> CC</i>1остроугольного треугольника<i> ABC </i>. Найдите сумму углов<i> B</i>2<i>A</i>1<i>C</i>2,<i> C</i>2<i>B</i>1<i>A</i>2и<i> A</i>2<i>C</i>1<i>B</i>2.
Окружность, вписанная в четырёхугольник<i> ABCD </i>, касается его сторон<i> DA </i>,<i> AB </i>,<i> BC </i>и<i> CD </i>в точках<i> K </i>,<i> L </i>,<i> M </i>и<i> N </i>соответственно. Пусть<i> S</i>1,<i> S</i>2,<i> S</i>3и<i> S</i>4– окружности, вписанные в треугольники<i> AKL </i>,<i> BLM </i>,<i> CMN </i>и<i> DNK </i>соответственно. К окружностям<i> S</i>1и<i> S</i>2,<i> S</i>2и<i> S</i>3,<i> S</i>3и<i> S</i>4,<i> S</i>4и<i> S</i>1проведены общие касательные, отличные от сторон четырёхугол...
Даны две окружности, касающиеся внутренним образом в точке<i> N </i>. Хорды<i> BA </i>и<i> BC </i>внешней окружности касаются внутренней в точках<i> K </i>и<i> M </i>соответственно. Пусть<i> Q </i>и<i> P </i>– середины дуг<i> AB </i>и<i> BC </i>, не содержащих точку<i> N </i>. Окружности, описанные около треугольников<i> BQK </i>и<i> BPM </i>, пересекаются в точке<i> B</i>1. Докажите, что<i> BPB</i>1<i>Q </i>– параллелограмм.
Пусть<i> ABCD </i>– вписанный четырёхугольник,<i> O </i>– точка пересечения диагоналей<i> AC </i>и<i> BD </i>. Пусть окружности, описанные около треугольников<i> ABO </i>и<i> COD </i>, пересекаются в точке<i> K </i>. Точка<i> L </i>такова, что треугольник<i> BLC </i>подобен треугольнику<i> AKD </i>. Докажите, что если четырёхугольник<i> BLCK </i>выпуклый, то он он является описанным.
Пусть <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> — основания высот <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> треугольника <i>ABC</i>. Докажите, что прямые Эйлера треугольников <!-- MATH $AB_{1}C_{1}$ --> <i>AB</i><sub>1</sub><i>C</i><sub>1</sub>, <!-- MATH $BA_{1}C_{1}$ --> <i>BA</i><sub>1</sub><i>C</i><sub>1</sub> и <!-- MATH $CA_{1}B_{1}$ --> <i>CA</i><sub>1</sub><i>B</i><sub>1</sub> пересекаются на окружности девяти...