Олимпиадные задачи по теме «Вспомогательная раскраска» - сложность 5 с решениями

Докажите, что существует такое натуральное число<i> n </i>, что если правильный треугольник со стороной<i> n </i>разбить прямыми, параллельными его сторонам, на<i> n<sup>2</sup> </i>правильных треугольников со стороной 1, то среди вершин этих треугольников можно выбрать1993<i>n </i>точек, никакие три из которых не являются вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного треугольника).

Прямоугольный лист бумаги размером<i>a</i>×<i>b</i>см разрезан на прямоугольные полоски, каждая из которых имеет сторону 1 см. Линии разрезов параллельны сторонам исходного листа. Доказать, что хотя бы одно из чисел<i>a</i>или<i>b</i>целое.

Найдите необходимые и достаточные условия, которым должны удовлетворять числа <i>a, b</i>, α и β, чтобы прямоугольник размером <i>a</i>×<i>b</i> можно было разрезать на прямоугольники размером α×β. Например, можно ли прямоугольник размером 50×60 разрезать на прямоугольники размером

а) 20×15;   б) 5×8;   в) 6,25×15;   г)  <img align="absmiddle" src="/storage/problem-media/73679/problem_73679_img_2.gif">

<i>Триангуляцией</i>многоугольника называют его разбиение на треугольники, обладающее тем свойством, что эти треугольники либо имеют общую сторону, либо имеют общую вершину, либо не имеют общих точек (т. е. вершина одного треугольника не может лежать на стороне другого). Докажите, что треугольники триангуляции можно раскрасить в три цвета так, что имеющие общую сторону треугольники будут разного цвета.

Правильный треугольник разбит на <i>n</i><sup>2</sup>одинаковых правильных треугольников (рис.). Часть из них занумерована числами1, 2,...,<i>m</i>, причем треугольники с последовательными номерами имеют смежные стороны. Докажите, что<i>m</i>$\le$<i>n</i><sup>2</sup>-<i>n</i>+ 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка