Олимпиадные задачи по теме «Вспомогательная раскраска» для 7 класса - сложность 3 с решениями
Вспомогательная раскраска
НазадЛюбознательный турист хочет прогуляться по улицам Старого города от вокзала (точка <i>A</i> на плане) до своего отеля (точка <i>B</i>). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет. <div align="center"><img align="absmiddle" src="/storage/problem-media/111897/problem_111897_img_2.gif"></div>
Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.
Правильный треугольник разбит на правильные треугольники со стороной 1 линиями, параллельными его сторонам и делящими каждую сторону на <i>n</i> частей (на рисунке <i>n</i> = 5). <div align="center"><img src="/storage/problem-media/109703/problem_109703_img_2.gif"></div>Какое наибольшее число отрезков длины 1 с концами в вершинах этих треугольников можно отметить так, чтобы не нашлось треугольника, все стороны которого состоят из отмеченных отрезков?
Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?
Каю дали целый ящик с фигурками в виде "пьедестала" (см. рисунок). а) Сможет ли он замостить ими шахматную доску 8×8? б) А доску 10×10? <div align="center"> <img src="/storage/problem-media/104005/problem_104005_img_2.gif"> </div>
В спортклубе тренируются 100 толстяков весом от 1 до 100 кг. На какое наименьшее число команд их можно разделить так, чтобы ни в одной команде не было двух толстяков, один из которых весит вдвое больше другого?
На бесконечной шахматной доске расставлены пешки через три поля на четвёртое, так что они образуют квадратную сетку.
Докажите, что шахматный конь не может обойти все свободные поля, побывав на каждом поле по одному разу.
Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?
В квадрате 7×7 клеток размещено 16 плиток размером 1×3 и одна плитка 1×1.
Докажите, что плитка 1×1 либо лежит в центре, либо примыкает к границам квадрата.
В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
Можно ли добиться, чтобы все числа делились а) на 2; б) на 3?
а) Дно прямоугольной коробки было выложено плитками размерами 2×2 и 1×4. Плитки высыпали из коробки и при этом потеряли одну плитку 2×2. Вместо неё удалось достать плитку 1×4. Докажите, что теперь выложить дно коробки плитками не удастся.
б) Останется ли верным утверждение задачи, если вместо плиток 1×4 и 2×2 рассматривать плитки из трёх квадратиков: прямоугольные 1×3 и "уголки").
<img src="/storage/problem-media/73578/problem_73578_img_2.gif" width="285" height="242" vspace="10" hspace="20" align="right">Каждая сторона равностороннего треугольника разбита на<nobr><i>n</i> равных</nobr>частей. Через точки деления проведены прямые, параллельные сторонам. В результате треугольник разбит на<i>n</i><sup>2</sup>треугольничков. Назовём цепочкой последовательность треугольничков, в которой ни один не появляется дважды и каждый последующий имеет общую сторону с предыдущим. Каково наибольшее возможное количество треугольничков в цепочке?
Решил шах проверить придворного мудреца. «Вот тебе шесть шкатулок, — сказал шах, — с надписями 1, 2, 3, 4, 5, 6 на крышках. В каждой шкатулке золотая монета, которая весит ровно столько граммов, сколько написано. Ты расставляешь шкатулки как угодно в клетках прямоугольника 2×3. Потом я втайне от тебя меняю местами монеты в каких-то двух шкатулках, стоящих в соседних по стороне клетках (или ничего не меняю). Затем ты укажешь на несколько шкатулок, а я назову тебе общий вес монет в них. Если после этого правильно определишь, какие монеты я переложил, останешься при дворе. А не сможешь — прогоню вон!» Как может действовать мудрец, чтобы выдержать испытание?
В левом нижнем углу клетчатой доски <i>n</i>×<i>n</i> стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите <i>n</i>.
Несколько кругов одного радиуса положили на стол так, что никакие два не перекрываются. Докажите, что круги можно раскрасить в четыре цвета так, что любые два касающихся круга будут разного цвета.
Может ли кузнечик за 25 прыжков вернуться в начальную позицию, если он прыгает:
a) по прямой в любую сторону на нечётное расстояние;
б) по плоскости на расстояние 1 в любом из четырёх основных направлений (вверх, вниз, вправо, влево);
в) по плоскости ходом коня (то есть по диагонали прямоугольника 1×2);
г) по диагонали прямоугольника <i>a</i>×<i>b</i> (<i>a</i> и <i>b</i> фиксированы).
Дно прямоугольной коробки вымощено плитками 1 × 4 и 2 × 2. Плитки высыпали из коробки и одна плитка 2 × 2 потерялась. Ее заменили на плитку 1 × 4. Докажите, что теперь дно коробки вымостить не удастся.