Олимпиадные задачи по теме «Принцип крайнего» для 1-6 класса - сложность 2 с решениями

Пятизначное число называется <i>неразложимым</i>, если оно не раскладывается в произведение двух трёхзначных чисел.

Какое наибольшее количество неразложимых пятизначных чисел может идти подряд?

Докажите, что числа от 1 до 16 можно записать в строку, но нельзя записать по кругу так, чтобы сумма любых двух соседних чисел была квадратом натурального числа.

Петя хочет изготовить необычную игральную кость, которая, как обычно, должна иметь форму куба, на гранях которого нарисованы точки (на разных гранях разное число точек), но при этом на каждых двух соседних гранях число точек должно различаться по крайней мере на два (при этом разрешается, чтобы на некоторых гранях оказалось больше шести точек). Сколько всего точек необходимо для этого нарисовать?

В вершинах 100-угольника расставлены числа так, что каждое равно среднему арифметическому своих соседей. Докажите, что все они равны.

Двадцать рыцарей надели двадцать плащей, и каждому плащ оказался короток. Тогда рыцари, сняв плащи, выстроились по росту. Самый высокий рыцарь взял себе самый длинный плащ, второй взял себе самый длинный плащ из оставшихся и т.д. Рыцарь самого маленького роста взял себе самый короткий плащ. Докажите, что и в этом случае каждому рыцарю плащ окажется короток.

Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?

Вася в течение 10 дней решал задачи — каждый день хотя бы одну. Каждый день (кроме первого), если погода была пасмурная, то он решал на одну задачу больше, чем в предыдущий день, а если солнечная — на одну задачу меньше. За первые 9 дней Вася решил 13 задач. Какая погода была на десятый день?

Лабиринт для мышей (см. рисунок) представляет собой квадрат 5 × 5 метров, мыши могут бегать только по дорожкам. На двух перекрёстках положили по одинаковому куску сыра (обозначены крестиками). На другом перекрёстке сидит мышка (обозначена кружочком). Она чует, где сыр, но до обоих кусочков ей нужно пробежать одинаковое расстояние. Поэтому она не знает, какой кусочек выбрать, и задумчиво сидит на месте. <img src="/storage/problem-media/66988/problem_66988_img_2.png"> а) Отметьте ещё пять перекрёстков, где могла бы задумчиво сидеть мышка (откуда до обоих кусочков сыра ей нужно пробежать одинаковое расстояние).

б) Придумайте, на каких двух перекрёстках можно положить по куску сыра так, чтобы подходящих для задумчивой мышки перекрёстков оказалось как можно больше. (Доказатель...

Имеется 36 борцов. У каждого некоторый уровень силы, и более сильный всегда побеждает более слабого, а равные по силе сводят поединок вничью. Всегда ли этих борцов можно разбить на пары так, что все победители в парах будут не слабее, чем все те, кто сделал ничью или проиграл, а все сделавшие ничью будут не слабее всех тех, кто проиграл?

Артём коллекционирует монеты. В его коллекции 27 монет, причём все они имеют различный диаметр, различную массу и были выпущены в разные годы. Каждая монета хранится в отдельном спичечном коробке. Может ли Артём сложить из этих коробков параллелепипед 3×3×3 так, чтобы любая монета была легче монеты, находящейся под ней, меньше монеты справа от нее и древнее той, которая находится перед ней?

Давным-давно страной Тарнией правил царь Ятианр. Чтобы тарнийцы поменьше рассуждали, он придумал для них простой язык. Его алфавит состоял всего из шести букв: А, И, Н, Р, Т, Я, но порядок их отличался от принятого в русском языке. Словами этого языка были все последовательности, использующие каждую из этих букв по одному разу. Ятианр издал полный словарь нового языка. В соответствии с алфавитом первым словом словаря оказалось "Тарния". Какое слово следовало в словаре за именем Ятианр?

10 человек собрали вместе 46 грибов, причём известно, что нет двух человек, собравших одинаковое число грибов.

Сколько грибов собрал каждый?

Солдаты построены в две шеренги по <i>n</i> человек, так что каждый солдат из первой шеренги не выше стоящего за ним солдата из второй шеренги. В шеренгах солдат выстроили по росту. Докажите, что после этого каждый солдат из первой шеренги также будет не выше стоящего за ним солдата из второй шеренги.

Дано 25 чисел. Сумма любых четырех из них положительна. Докажите, что сумма их всех тоже положительна.

a) Решить в целых числах уравнение  <sup>1</sup>/<sub><i>a</i></sub>+<sup>1</sup>/<sub><i>b</i></sub>+<sup>1</sup>/<sub><i>c</i></sub>= 1. б)  <sup>1</sup>/<sub><i>a</i></sub>+<sup>1</sup>/<sub><i>b</i></sub>+<sup>1</sup>/<sub><i>c</i></sub>< 1  (<i>a, b, c</i>– натуральные числа). Доказать, что  <sup>1</sup>/<sub><i>a</i></sub>+<sup>1</sup>/<sub><i>b</i></sub>+<sup>1</sup>/<sub><i>c</i></sub><<sup>41</sup>/<sub>42</sub>.

В стране каждые два города соединены дорогой с односторонним движением.

Доказать, что существует город, из которого можно проехать в любой другой не более чем по двум дорогам.

По кругу расставлены нули и единицы (и те и другие присутствуют). Каждое число, у которого два соседа одинаковы, заменяют на ноль, а остальные числа – на единицы, и такую операцию проделывают несколько раз.

  a) Могут ли все числа стать нулями, если их 13 штук?   б) Могут ли все числа стать единицами, если их 14 штук?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка