Олимпиадные задачи по теме «Инварианты и полуинварианты» - сложность 5 с решениями
Инварианты и полуинварианты
НазадВ 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.
На бесконечной в обе стороны полосе из клеток, пронумерованных целыми числами, лежит несколько камней (возможно, по нескольку в одной клетке). Разрешается выполнять следующие действия:<ol> <li> Снять по одному камню с клеток <i> n-</i>1 и <i> n </i> и положить один камень в клетку <i> n+</i>1; </li> <li> Снять два камня с клетки <i> n </i> и положить по одному камню в клетки <i> n+</i>1, <i> n-</i>2.</li></ol>Докажите, что при любой последовательности действий мы достигнем ситуации, когда указанные действия больше выполнять нельзя, и эта конечная ситуация не зависит от последовательности действий (а зависит только от начальной раскладки камней по клеткам).
На доске написано несколько чисел. Разрешается стереть любые два числа $a$ и $b$, а затем вместо одного из них написать число $\frac{a+b}{4}$. Какое наименьшее число может остаться на доске после 2018 таких операций, если изначально на ней написано 2019 единиц?
Даны точки<i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>. Рассмотрим окружность радиуса <i>R</i>, содержащую некоторые из них. Построим затем окружность радиуса <i>R</i>с центром в центре масс точек, лежащих внутри первой окружности, и т. д. Докажите, что этот процесс остановится, т. е. окружности начнут совпадать.
Докажите, что выпуклый многоугольник нельзя разрезать на конечное число невыпуклых четырехугольников.
Докажите, что существуют равновеликие многоугольники, которые нельзя разбить на многоугольники (возможно, невыпуклые), переводящиеся друг в друга параллельным переносом.