Олимпиадные задачи по теме «Математический анализ» для 1-7 класса - сложность 3 с решениями

Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями:  <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|,  причём  0 ≤ <i>x</i><sub>1</sub> ≤ 1.

  а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда <i>x</i><sub>1</sub> рационально.

  б) Сколько существует значений <i>x</i><sub>1</sub>, для которых эта последовательность – периодическая с периодом <i>T</i> (для каждого <i>T</i> = 2, 3, ...)?

Задано правило, которое каждой паре чисел <i>x</i>, <i>y</i> ставит в соответствие некоторое число <i>x*y</i>, причём для любых <i>x, y, z</i> выполняются тождества:

  1)  <i>x</i>*<i>x</i> = 0,

  2)  <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i>*<i>y</i>) + <i>z</i>.

Найдите 1993*1932.

Найдется ли такое <i>n</i>, при котором  <img align="middle" src="/storage/problem-media/88296/problem_88296_img_2.gif" width="141" height="41"> ?   А больше 1000?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка