Олимпиадные задачи по теме «Математический анализ» для 1-7 класса - сложность 3 с решениями
Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями: <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|, причём 0 ≤ <i>x</i><sub>1</sub> ≤ 1.
а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда <i>x</i><sub>1</sub> рационально.
б) Сколько существует значений <i>x</i><sub>1</sub>, для которых эта последовательность – периодическая с периодом <i>T</i> (для каждого <i>T</i> = 2, 3, ...)?
Задано правило, которое каждой паре чисел <i>x</i>, <i>y</i> ставит в соответствие некоторое число <i>x*y</i>, причём для любых <i>x, y, z</i> выполняются тождества:
1) <i>x</i>*<i>x</i> = 0,
2) <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i>*<i>y</i>) + <i>z</i>.
Найдите 1993*1932.
Найдется ли такое <i>n</i>, при котором <img align="middle" src="/storage/problem-media/88296/problem_88296_img_2.gif" width="141" height="41"> ? А больше 1000?