Олимпиадные задачи по теме «Ряды» для 4-10 класса

а) В бесконечной последовательности бумажных прямоугольников площадь <i>n</i>-го прямоугольника равна <i>n</i>². Обязательно ли можно покрыть ими плоскость? Наложения допускаются.б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа <i>N</i> найдутся квадраты суммарной площади больше <i>N</i>?

Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями  <i>d</i><sub>1</sub>, <i>d</i><sub>2</sub>, <i>d</i><sub>3</sub>, ... .  Может ли случиться, что при этом сумма   <sup>1</sup>/<sub><i>d</i><sub>1</sub></sub> + <sup>1</sup>/<sub><i>d</i><sub>2</sub></sub> + ... + <sup>1</sup>/<i><sub>d<sub>k</sub></sub></i>   не превышает 0,9? Рассмотрите случаи:

  а) общее число прогрессий конечно;

  б) прогрессий бесконечное число (в этом случае условие нужно понимат...

Найдется ли такое <i>n</i>, при котором  <img align="middle" src="/storage/problem-media/88296/problem_88296_img_2.gif" width="141" height="41"> ?   А больше 1000?

а) На плоскости даны<i>n</i>векторов, длина каждого из которых<nobr>равна 1.</nobr>Сумма всех<i>n</i>векторов равна нулевому вектору. Докажите, что векторы можно занумеровать так, чтобы при всех<nobr><i>k</i> = 1,</nobr>2, ...,<i>n</i>выполнялось следующее условие: длина суммы первых<nobr><i>k</i> векторов</nobr>не<nobr>превышает 3.</nobr>б) Докажите аналогичное утверждение для <i>n</i> векторов с <nobr>суммой 0,</nobr> длина каждого из которых не <nobr>превосходит 1.</nobr> в) Можно ли заменить <nobr>число 3</nobr> в <nobr>пункте а)</nobr> меньшим? Постарайтесь улучшить оценку и в <nobr>пункте б).</nobr>

Обозначим через<i>S</i>сумму следующего ряда:<div align="CENTER"> <!-- MATH \begin{equation} S=1-1+1-1+1-\ldots \end{equation} --> <table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"> <td nowrap align="CENTER"><i>S</i> = 1 - 1 + 1 - 1 + 1 -...</td> <td nowrap width="10" align="RIGHT"> (12.1)</td></tr> </table></div><br clear="ALL">Преобразовав равенство (<a href="https://mirolimp.ru/tasks/161543">12.1</a>), можно получить уравнение, из которого находится<i>S</i>:<div align="CENTER"> <i>S</i> = 1 - (1 - 1 + 1 - 1 +...) = 1 -...

Найдите суммы рядов   а)  <img align="absmiddle" src="/storage/problem-media/60427/problem_60427_img_2.gif">

  б)  <img align="absmiddle" src="/storage/problem-media/60427/problem_60427_img_3.gif">

  в)  <img align="absmiddle" src="/storage/problem-media/60427/problem_60427_img_4.gif">  (<i>r</i> ≥ 2).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка