Олимпиадные задачи по теме «Функции нескольких переменных» - сложность 3 с решениями

Каждой паре чисел <i>x</i> и <i>y</i> поставлено в соответствие некоторое число <i>x</i><i>y</i>. Найдите 19931935, если известно, что для любых трёх чисел <i>x, y, z</i>  выполнены тождества:  <i>x</i><i>x</i> = 0  и  <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i><i>y</i>) + <i>z</i>.

Задано правило, которое каждой паре чисел <i>x</i>, <i>y</i> ставит в соответствие некоторое число <i>x*y</i>, причём для любых <i>x, y, z</i> выполняются тождества:

  1)  <i>x</i>*<i>x</i> = 0,

  2)  <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i>*<i>y</i>) + <i>z</i>.

Найдите 1993*1932.

<b>Дискретная теорема Лиувилля.</b>Пусть<i>f</i>(<i>x</i>,<i>y</i>) — ограниченная гармоническая (определение смотри в задаче<a href="https://mirolimp.ru/tasks/161455">11.28</a>) функция, то есть существует положительная константа<i>M</i>такая, что<div align="CENTER"> $\displaystyle \forall$(<i>x</i>, <i>y</i>) $\displaystyle \in$ $\displaystyle \mathbb {Z}$<sup>2</sup>    | <i>f</i> (<i>x</i>, <i>y</i>)| $\displaystyle \leqslant$ <i>M</i>. </div>Докажите, что функция<i>f</i>(<i>x</i>,<i>y</i>) равна константе.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка