Олимпиадные задачи по теме «Отношение порядка» - сложность 1-2 с решениями

В большую шкатулку положили 10 шкатулок поменьше. В каждую из вложенных шкатулок либо положили 10 еще поменьше, либо ничего не положили. В каждую из меньших опять положили или 10, или ни одной, и т.д. После этого оказалось ровно 2006 шкатулок с содержимым. Сколько пустых?

Некоторые из чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ..., <i>a</i><sub>200</sub>написаны синим карандашом, а остальные — красным. Если стереть все красные числа, то останутся все натуральные числа от 1 до 100, записанные в порядке возрастания. Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1, записанные в порядке убывания. Докажите, что среди чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ..., <i>a</i><sub>100</sub>содержатся все натуральные числа от 1 до 100 включительно.

Дядя Фёдор, кот Матроскин, Шарик и почтальон Печкин сидят на скамейке. Если Шарик, сидящий справа от всех, сядет между дядей Фёдором и котом, то кот станет крайним слева. В каком порядке они сидят?

Четыре подруги пришли на каток, каждая со своим братом. Они разбились на пары и начали кататься. Оказалось, что в каждой паре «кавалер» выше «дамы» и никто не катается со своей сестрой. Самым высоким в компании был Юра Воробьев, следующим по росту — Андрей Егоров, потом Люся Егорова, Сережа Петров, Оля Петрова, Дима Крымов, Инна Крымова и Аня Воробьева. Определите, кто с кем катался?

Если для вчера завтра был четверг, то какой день будет вчера для послезавтра?

a) Яблоко тяжелее банана, а банан тяжелее киви. Что тяжелее — киви или яблоко? б) Мандарин легче груши, а апельсин тяжелее мандарина. Что тяжелее — груша или апельсин?

В пяти корзинах А, Б, В, Г и Д лежат яблоки пяти разных сортов. В каждой из корзин А и Б находятся яблоки 3 и 4 сорта, в корзине В — 2 и 3, в корзине Г — 4 и 5, в корзине Д — 1 и 5. Занумеруйте корзины так, чтобы в первой корзине имелись яблоки 1-го сорта (как минимум одно), во второй корзине — яблоки 2-го сорта и т.д.

Во время бала каждый юноша танцевал вальс с девушкой либо более красивой, чем на предыдущем танце, либо более умной, но большинство (не меньше 80%) – с девушкой одновременно более красивой и более умной. Могло ли такое быть? (Юношей и девушек на балу было поровну.)

Во время бала каждый юноша танцевал вальс с девушкой либо более красивой, чем на предыдущем танце, либо более умной, а один – с девушкой одновременно более красивой и более умной. Могло ли такое быть? (Юношей и девушек на балу было поровну.)

Три шахматиста <i>A, B</i> и <i>C</i> сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков <i>A</i> занял первое место, <i>C</i> – последнее, а по числу побед, наоборот, <i>A</i> занял последнее место, <i>C</i> – первое (за победу присуждается одно очко, за ничью – пол-очка)?

В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона. Какое наибольшее число баронов могло быть при этих условиях?

(В королевстве действовал закон: "вассал моего вассала – не мой вассал".)

В очереди в школьный буфет стоят Вика, Соня, Боря, Денис и Алла. Вика стоит впереди Сони, но после Аллы; Боря и Алла не стоят рядом; Денис не находится рядом ни с Аллой, ни с Викой, ни с Борей. В каком порядке стоят ребята?

Пять тетрадей  — синяя, серая, коричневая, красная и жёлтая  — лежали в стопке в определённом порядке. Их разложили на столе в две стопки: сначала верхнюю тетрадь, потом следующую за ней и т.д. В результате в первой стопке оказались: на столе  — красная тетрадь, на ней  — жёлтая, сверху  — серая; во второй: на столе  — коричневая тетрадь, на ней  — синяя.

Затем тетради собрали в одну стопку в прежнем порядке и вновь выложили на стол, снимая их так же поочерёдно сверху стопки. На этот раз в первой стопке лежали: на столе  — коричневая тетрадь, на ней  — красная; во второй: на столе  — жёлтая тетрадь, на ней  — серая, сверху  — синяя.

В каком порядке тетради лежали в стопке первоначально?

Четыре подруги пришли на каток, каждая со своим братом. Они разбились на пары и начали кататься. Оказалось, что в каждой паре "кавалер" выше "дамы" и никто не катается со своей сестрой. Самым высоким в компании был Юра Воробьёв, следующим по росту  — Андрей Егоров, потом Люся Егорова, Серёжа Петров, Оля Петрова, Дима Крымов, Инна Крымова и Аня Воробьёва. Определите, кто с кем катался.

В каждой клетке шахматной доски стоит оловянный солдатик. Все 64 солдатика разной величины. Среди каждых восьми солдатиков, составляющих горизонтальный ряд, выбирают самого большого. После этого из отобранных восьми больших солдатиков выбирают самого маленького. Затем среди каждых восьми солдатиков, составляющих вертикальный ряд, выбирают самого маленького. После этого из отобранных восьми маленьких солдатиков выбирают самого большого. Какой солдатик больше: самый маленький из больших или самый большой из маленьких?

200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?

Незнайка выписал семь двузначных чисел в порядке возрастания. Затем одинаковые цифры заменил одинаковыми буквами, а разные – разными. Получилось вот что: ХА, АЙ, АХ, ОЙ, ЭМ, ЭЙ, МУ. Докажите, что Незнайка что-то перепутал.

С начала учебного года Андрей записывал свои оценки по математике. Получая очередную оценку (2, 3, 4 или 5), он называл её <i>неожиданной</i>, если до этого момента она встречалась реже каждой из всех остальных возможных оценок. (Например, если бы он получил с начала года подряд оценки 3, 4, 2, 5, 5, 5, 2, 3, 4, 3, то неожиданными были бы первая пятерка и вторая четвёрка.) За весь учебный год Андрей получил 40 оценок – по 10 пятерок, четвёрок, троек и двоек (неизвестно, в каком порядке). Можно ли точно сказать, сколько оценок были для него неожиданными?

Пусть  <i>T</i><sub>α</sub>(<i>x, y, z</i>) ≥ <i>T</i><sub>β</sub>(<i>x, y, z</i>)  для всех неотрицательных <i>x, y, z</i>. Докажите, что   <img align="absmiddle" src="/storage/problem-media/61423/problem_61423_img_2.gif"> Определение многочленов <i>T</i><sub>α</sub> смотри в задаче <a href="https://mirolimp.ru/tasks/161417">161417</a>, про показатели смотри в <a href="https://problems.ru/thes.php?letter=4#diagramma_junga">справочнике</a>.

а) Диаграммы Юнга  (4, 1, 1)  и  (3, 3, 0)  не сравнимы, – ни одна из них не мажорирует другую. Есть ли еще такие несравнимые наборы с суммой 6? б) Найдите все несравнимые пары наборов для  <i>s</i> = 7. Про диаграммы Юнга смотри <a href="https://problems.ru/thes.php?letter=4#diagramma_junga">здесь</a>.

Нарисуйте все лестницы из четырёх кирпичей в порядке убывания, начиная с самой крутой  (4, 0, 0, 0)  и заканчивая самой пологой  (1, 1, 1, 1).

Докажите, что   <img align="absmiddle" src="/storage/problem-media/61420/problem_61420_img_2.gif">   тогда и только тогда, когда β можно получить из α проделав несколько (может быть один раз или ни одного) операции вида <div align="CENTER">(<i>k,  j, i</i>)   ↔   (<i>k</i> – 1,  <i>j</i> + 1, <i>i</i>),     (<i>k,  j, i</i>)   ↔   (<i>k</i> – 1, <i>j, i</i> + 1),     (<i>k, j, i</i>)   ↔ (<i>k,  j</i> – 1, <i>i</i> + 1). </div>(Эти операции можно представлять себе как сбрасывание одного кирпича вниз на диаграмме Юнга. Про диаграммы Юнга смотри <a href="https://problems.ru/thes.php?letter=4#diagramma_junga">зд...

Дана прямоугольная таблица, в каждой клетке которой написано вещественное число, причем в каждой строке таблицы числа расположены в порядке возрастания. Докажите, что если расположить числа в каждом столбце таблицы в порядке возрастания, то в строках полученной таблицы числа по-прежнему будут располагаться в порядке возрастания.

Три бегуна А, Б, В несколько раз совершили забег на 100 метров. При подведении результатов оказалось, что А обогнал Б больше, чем в половине забегов, Б обогнал В больше, чем в половине забегов, а В обогнал А больше, чем в половине забегов. Могло ли это случиться?

Некто расставил в произвольном порядке 10-томное собрание сочинений. Назовём <i>беспорядком</i> пару томов, для которых том с большим номером стоит левее. Для данной расстановки томов посчитано число <i>S</i> всех беспорядков. Какие значения может принимать <i>S</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка