Олимпиадные задачи по теме «Геометрия» для 5-7 класса - сложность 4 с решениями
Начертите два четырехугольника с вершинами в узлах сетки, из которых можно сложить а) как треугольник, так и пятиугольник; б) и треугольник, и четырехугольник, и пятиугольник. Покажите, как это можно сделать.
Можно ли в клетках бесконечного клетчатого листа расставить натуральные числа таким образом, чтобы при любых натуральных <i>m, n</i> > 100 сумма чисел в любом прямоугольнике <i>m</i>×<i>n</i> клеток делилась на <i>m + n</i>?
Петя разрезал прямоугольный лист бумаги по прямой. Затем он разрезал по прямой один из получившихся кусков. Затем он проделал то же самое с одним из трёх получившихся кусков и т.д. Докажите, что после достаточного количества разрезаний можно будет выбрать среди получившихся кусков 100 многоугольников с одинаковым числом вершин (например, 100 треугольников или 100 четырёхугольников и т.д.).
а) Из картона вырезали 7 выпуклых многоугольников и положили на стол так, что любые 6 из них можно прибить к столу двумя гвоздями, а все 7 нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.) б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)
а) Наконец, у Снежной Королевы появились все квадраты с целыми сторонами, но каждый в единственном экземпляре. Королева пообещала Каю, что он станет мудрым, если сможет из каких-то имеющихся квадратов сложить прямоугольник. Сможет ли он это сделать? б) Отдыхая, Кай стал заполнять стеклянный аквариум ледяными кубиками, которые лежали рядом. Кубики были самых разных размеров, но среди них не было двух одинаковых. Сможет ли Кай заполнить аквариум кубиками целиком?
Каждая клетка шахматной доски закрашена в один из цветов – синий или красный. Докажите, что клетки одного из цветов обладают тем свойством, что их может обойти шахматный ферзь (на клетках этого цвета ферзь может побывать не один раз, на клетки другого цвета он не ставится, но может через них перепрыгивать).
См. задачу <a href="https://mirolimp.ru/tasks/179385">179385</a> в) и г).
Для каких <i>n</i> существует такая замкнутая несамопересекающаяся ломаная из <i>n</i> звеньев, что каждая прямая, содержащая одно из звеньев этой ломаной, содержит ещё хотя бы одно её звено?
По окружности выписаны <i>n</i> чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub><i>n</i></sub>, каждое из которых равно 1 или –1, причём сумма произведений соседних чисел равна нулю и вообще для каждого <i>k</i> = 1, 2, ..., <i>n</i> – 1 сумма <i>n</i> произведений чисел, отстоящих друг от друга на <i>k</i> мест, равна нулю
(то есть <i>x</i><sub>1</sub><i>x</i><sub>2</sub> + <i>x</i><sub>2</sub><i>x</i><sub>3</sub> + ... + <i>x<sub>n</sub>x</i><sub>1</sub> = 0, <i>x</i><sub>...
Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.
На сторонах равностороннего треугольника $ABC$ построены во внешнюю сторону треугольники $AB'C$, $CA'B$, $BC'A$ так, что получился шестиугольник $AB'CA'BC'$, в котором каждый из углов $A'BC'$, $C'AB'$, $B'CA'$ больше $120^\circ$, а для сторон выполняются равенства $AB'=AC'$, $BC'=BA'$, $CA'=CB'$. Докажите, что из отрезков $AB'$, $BC'$, $CA'$ можно составить треугольник.
На плоскости расположено<i>n</i>$\ge$5 окружностей так, что любые три из них имеют общую точку. Докажите, что тогда и все окружности имеют общую точку.
На окружности отметили 4<i>n</i>точек и окрасили их через одну в красный и синий цвета. Точки каждого цвета разбили на пары, а точки каждой пары соединили отрезками того же цвета. Докажите, что если никакие три отрезка не пересекаются в одной точке, то найдется по крайней мере <i>n</i>точек пересечения красных отрезков с синими.
Точка <i>O</i>, лежащая внутри выпуклого многоугольника<i>A</i><sub>1</sub>...<i>A</i><sub>n</sub>, обладает тем свойством, что любая прямая<i>OA</i><sub>i</sub>содержит еще одну вершину <i>A</i><sub>j</sub>. Докажите, что кроме точки <i>O</i>никакая другая точка не обладает этим свойством.
а) Докажите, что любой неравносторонний треугольник можно разрезать на неравные треугольники, подобные исходному. б) Докажите, что правильный треугольник нельзя разрезать на неравные правильные треугольники.
В парке растет 10000 деревьев, посаженных квадратно-гнездовым способом (100 рядов по 100 деревьев). Какое наибольшее число деревьев можно срубить, чтобы выполнялось следующее условие: если встать на любой пень, то не будет видно ни одного другого пня? (Деревья можно считать достаточно тонкими.)
Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком плюс, а участки пути, по которым мы удалялись от центра, — со знаком минус. Докажите, что для любого такого пути сумма длин участков пути, взятых с указанными знаками, равна нулю.
На каждой стороне четырехугольника <i>ABCD</i>взято по две точки, и они соединены так, как показано на рис. Докажите, что если все пять заштрихованных четырехугольников описанные, то четырехугольник <i>ABCD</i>тоже описанный. <div align="center"><img src="/storage/problem-media/56664/problem_56664_img_2.gif" border="1"></div>
Дан параллелограмм <i>ABCD</i>. Вневписанная окружность треугольника<i>ABD</i>касается продолжений сторон <i>AD</i>и <i>AB</i>в точках <i>M</i>и <i>N</i>. Докажите, что точки пересечения отрезка <i>MN</i>с <i>BC</i>и <i>CD</i>лежат на вписанной окружности треугольника <i>BCD</i>.
К двум окружностям различного радиуса проведены общие внешние касательные <i>AB</i>и <i>CD</i>. Докажите, что четырехугольник <i>ABCD</i>описанный тогда и только тогда, когда окружности касаются.
Многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>2n</sub>вписанный. Про все пары его противоположных сторон, кроме одной, известно, что они параллельны. Докажите, что при <i>n</i>нечетном оставшаяся пара сторон тоже параллельна, а при <i>n</i>четном оставшаяся пара сторон равна по длине.