Олимпиадные задачи по теме «Комбинаторная геометрия» - сложность 1 с решениями
Комбинаторная геометрия
НазадРазрежьте данную фигуру на три одинаковые части.<div align="center"><img src="/storage/problem-media/116863/problem_116863_img_2.gif"></div>
Можно ли сложить какой-нибудь квадрат из трёхклеточных уголков (см. рис.)?<div align="center"><img src="/storage/problem-media/116843/problem_116843_img_2.gif"></div>
Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок). <div align="center"><img src="/storage/problem-media/116655/problem_116655_img_2.gif"></div>А сколько спичек потребуется, чтобы сложить ромб со стороной в 10 спичек, разбитый на такие же треугольники со стороной в одну спичку?
Покажите, как разрезать квадрат размером 5×5 клеток на "уголки" шириной в одну клетку так, чтобы все "уголки" состояли из разного количества клеток. (Длины "сторон" уголка могут быть как одинаковыми, так и различными.)
Разрежьте рамку (см. рис.) на 16 равных частей. <div align="center"><img src="/storage/problem-media/116603/problem_116603_img_2.gif"></div>
Можно ли начертить два треугольника так, чтобы образовался девятиугольник?
В точке В живёт Винни-Пух, а в точках К, С, П и И – его друзья Кролик, Сова, Пятачок и ослик Иа-Иа (см. рисунок). <div align="center"><img src="/storage/problem-media/116471/problem_116471_img_2.gif"></div>Зимним утром Винни-Пух навестил их всех по одному разу, а потом вернулся домой. При этом он протоптал в снегу пять прямых тропинок от домика к домику, не пересекающих друг друга. Начертите как можно больше возможных маршрутов Винни-Пуха.
Разрежьте фигуру (см. рисунок) по линиям сетки на четыре равные фигуры. <div align="center"><img src="/storage/problem-media/116466/problem_116466_img_2.gif"></div>
Из прозрачной пленки вырезаны три квадрата с узорами, нарисованными на них чёрной краской (см. рисунок). <div align="center"><img src="/storage/problem-media/116461/problem_116461_img_2.gif"></div>Нарисуйте узор, который получится при наложении этих трёх квадратов друг на друга. (Поворачивать квадраты нельзя.)
На рисунке изображен параллелограмм и отмечена точка <i>P</i> пересечения его диагоналей. Проведите через <i>P</i> прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб.<div align="center"><img src="/storage/problem-media/116078/problem_116078_img_2.png"></div>
Разрежьте квадрат 6×6 клеточек на трёхклеточные уголки (см. рис.) так, чтобы никакие два уголка не образовывали прямоугольник 2×3. <center> <img align="absmiddle" src="/storage/problem-media/116061/problem_116061_img_2.gif"> </center>
Ниже приведён фрагмент мозаики, которая состоит из ромбиков двух видов: "широких" и "узких" (см. рис.). <div align="center"><img src="/storage/problem-media/116054/problem_116054_img_2.gif"></div><div align="center"><img src="/storage/problem-media/116054/problem_116054_img_3.gif"></div>Нарисуйте, как по линиям мозаики вырезать фигуру, состоящую ровно из 3 "широких" и 8 "узких" ромбиков. (Фигура не должна распадаться на части.)
Пете и Коле выдали две одинаковые фигуры, вырезанные из клетчатой бумаги. Известно, что в каждой фигуре меньше, чем16клеток. Петя разрезал свою фигуру на части из четырех клеток (см. рисунок слева), а Коля разрезал свою фигуру на уголки из трех клеток (см. рисунок справа). Приведите пример фигуры, которую могли выдать мальчикам. Покажите, как эту фигуру разрезал на части Петя, и как ее разрезал Коля.
<center><i> <img align="absmiddle" src="/storage/problem-media/115487/problem_115487_img_2.gif"> </i></center>
Разрежьте данную фигуру (см. рисунок) на три равных фигуры. <center><i> <img align="absmiddle" src="/storage/problem-media/115474/problem_115474_img_2.gif"> </i></center>
Разрежьте фигуру, изображенную на рисунке, на две равные части. <center><i> <img align="absmiddle" src="/storage/problem-media/115469/problem_115469_img_2.gif"> </i></center>
Маша посмотрела на рисунок и сказала: "Здесь нарисовано семь прямоугольников: один большой и шесть маленьких". "Здесь есть еще различные средние прямоугольники" – сказала мама. Сколько же всего прямоугольников на этом рисунке? Ответ объясните. <img src="/storage/problem-media/111235/problem_111235_img_2.gif">
Разрежьте одну из фигур, приведенных на рисунке, на две части так, чтобы из них можно было сложить каждую из оставшихся. Нарисуйте, как вы разрезаете и как складываете.
<i> <img src="/storage/problem-media/111230/problem_111230_img_2.gif"> </i>
<i> <img src="/storage/problem-media/111230/problem_111230_img_3.gif"> </i>
<i> <img src="/storage/problem-media/111230/problem_111230_img_4.gif"> </i>
Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно <table cellspacing="0"> <tr><td>а) по 2 монеты; </td><td>б) по 3 монеты; </td><td>в) по 4 монеты;</td></tr> <tr><td>г) по 5 монет; </td><td>д) по 6 монет; </td><td>е) по 7 монет?</td></tr> </table>(Разрешается класть монеты одну на другую.) В тех случаях, когда это возможно, нарисуйте, как это сделать. В остальных случаях докажите, что так расположить монеты нельзя.
На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов —<i>n</i>. Докажите, что общее число клеточек есть квадрат некоторого числа.<table> <tr><td>
_ ||_ ||||_ ||||||_ |||||||_| .....................
||||| ....... ||||| </pre> </td></tr> <tr><td>Рис. 1</td></tr> </table>
Раскрасьте рисунок в четыре цвета так, чтобы соседние части были покрашены в разные цвета. б) Можно ли обойтись тремя цветами?<div align="center"><img src="/storage/problem-media/105193/problem_105193_img_2.jpg"></div>
Можно ли расставить на футбольном поле четырёх футболистов так, чтобы попарные расстояния между ними равнялись 1, 2, 3, 4, 5 и 6 метров?
Можно ли поставить на плоскости 100 точек (сначала первую, потом вторую и так далее до сотой) так, чтобы никакие три точки не лежали на одной прямой и чтобы в любой момент фигура, состоящая из уже поставленных точек, имела ось симметрии?
Составьте квадрат, используя ровно четыре из пяти изображенных ниже фигур. Каждую из четырех выбранных Вами фигур можно использовать только один раз.<div align="center"><img src="/storage/problem-media/104070/problem_104070_img_2.jpg"></div>
Наташа сделала из листа клетчатой бумаги календарь на январь 2006 года (см. рисунок) и заметила, что центры клеток 10, 20 и 30 января образуют равнобедренный прямоугольный треугольник. Наташа предположила, что это будет верно и в любом другом году, за исключением тех лет, когда центры клеток 10, 20 и 30 лежат на одной прямой. Права ли Наташа?<div align="center"><img src="/storage/problem-media/104065/problem_104065_img_2.gif"></div>
Разрежьте изображённый на рисунке пятиугольник на две одинаковые (совпадающие при наложении) части.<div align="center"><img src="/storage/problem-media/104064/problem_104064_img_2.gif"></div>