Олимпиадные задачи по теме «Средние величины» для 4-6 класса
Средние величины
НазадКое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?
Люди заходят с улицы в метро равномерно. Пройдя через турникеты, они оказываются в небольшом зале перед эскалаторами. Двери на вход только что открылись, и сначала зал перед эскалаторами был пустой, а на спуск работал только один эскалатор. Один эскалатор не справлялся с толпой, так что за 6 минут зал наполовину заполнился. Тогда включили на спуск второй эскалатор, но толпа продолжала увеличиваться – ещё через 15 минут зал был полон. За какое время зал опустеет, если включить третий эскалатор?
Может ли среднее арифметическое 35 целых чисел равняться 6,35?
<np>Тринадцать индюшат клевали зерно. Первый индюшонок склевал 40 зёрен; второй – 60, каждый следующий – среднее арифметическое зёрен, склеванных всеми предыдущими индюшатами. Сколько зёрен склевал 10-й индюшонок? <h3>Подсказка</h3>Вспомните свойства среднего арифметического. <h3>Решение</h3>Третий индюшонок склевал (40 + 60):2 = 50 очков. Каждый следующий тоже склевал по 50 зёрен: если в группу чисел добавить число, равное среднему арифметическому этой группы, то среднее. арифметическое новой группы будет равно среднему арифметическому начальной группы. <h3>Ответ</h3>50 зёрен. <h3>Источники и прецеденты использования</h3> <div class="problemdetailssourcetablecontainer"> <table class="problemdetailssourcetabl...
В вершинах 100-угольника расставлены числа так, что каждое равно среднему арифметическому своих соседей. Докажите, что все они равны.
На числовой прямой отмечены две точки. В каком месте этой прямой расположена точка, соответствующая их среднему арифметическому?
Во время стоянки между двумя рейсами матросу исполнилось 20 лет. По этому случаю в кают-компании собрались все шесть членов команды.
– Я вдвое старше юнги и на 6 лет старше машиниста, – сказал рулевой.
– А я на столько же старше юнги, на сколько моложе машиниста, – заметил боцман. – Кроме того, я на 4 года старше матроса.
– Средний возраст команды – 28 лет, – дал справку капитан.
Сколько лет капитану?
Средний возраст одиннадцати игроков футбольной команды – 22 года. Во время матча один из игроков получил травму и ушёл с поля. Средний возраст оставшихся на поле игроков стал равен 21 году. Сколько лет футболисту, получившему травму?
Купец случайно перемешал конфеты первого сорта (по 3 руб. за фунт) и конфеты второго сорта (по 2 руб. за фунт). По какой цене надо продавать эту смесь, чтобы выручить ту же сумму, если известно, что первоначально общая стоимость всех конфет первого сорта была равна общей стоимости всех конфет второго сорта?
Профессор Тестер проводит серию тестов, на основании которых он выставляет испытуемому средний балл. Закончив отвечать, Джон понял, что если бы он получил за последний тест 97 очков, то его средний балл составил бы 90; а если бы он получил за последний тест всего 73 очка, то его средний балл составил бы 87. Сколько тестов в серии профессора Тестера?
В соревновании участвовали 50 стрелков. Первый выбил 60 очков; второй – 80; третий – среднее арифметическое очков первых двух; четвёртый – среднее арифметическое очков первых трёх. Каждый следующий выбил среднее арифметическое очков всех предыдущих. Сколько очков выбил 42-й стрелок? А 50-й?
В Солнечной долине 10 посёлков. Однажды статистики долины провели исследование численности жителей в посёлках. Обнаружили следующее.
1. Число жителей в любых двух посёлках долины отличается не более чем на 100 человек.
2. В посёлке Знойное ровно 1000 жителей, что превышает среднюю численность населения посёлков долины на 90 человек.
Сколько жителей в посёлке Радужный, который также расположен в Солнечной долине?
В классе у Марии Ивановны прошёл ежегодный тест по английскому языку. Оказалось, что в обеих группах А и Б средний балл понизился по сравнению с прошлым годом (см. таблицу). <div align="center"><img src="/storage/problem-media/66039/problem_66039_img_2.gif"></div>Мария Ивановна должна писать отчет, но знает, что директор школы будет недоволен, поскольку считает, что средний балл должен каждый год расти. Баллы менять нельзя, но Мария Ивановна может переводить учеников из одной группы в другую. Может ли она сделать так, что средний балл в каждой группе окажется выше, чем в прошлом году?
К концу полугодия у Василия Петрова в журнале стояли такие отметки по математике: 4, 1, 2, 5, 2 Перед тем как выставить полугодовую отметку, учитель математики сказал Васе:
– Вася, ты можешь выбрать метод, как вывести твою отметку за полугодие. Предлагаю два варианта. Метод А: среднее арифметическое текущих отметок с округлением до целого. Метод Б: медиана текущих отметок.
Лучший метод для Васи – это такой метод, который даст Васе в полугодии наибольшую отметку. Какой метод для Васи лучший?
Городской муниципалитет Затонска принял правило: отопление в домах следует включать не раньше 26 октября, но только если средняя температура в течение трёх предыдущих дней ниже 8°C. В городе два района – Прибрежный и Заречный.
В Прибрежном районе правило поняли так: если три дня подряд средняя дневная температура каждый день ниже 8°C, то на четвёртый день нужно включить отопление, если этот день случился 26 октября или позже.
В Заречном районе правило поняли иначе: если средняя температура за трёхдневный период ниже 8°C, то на четвёртый день нужно включить отопление, если этот день не раньше 26 октября.
В таблице показана средняя дневная температура за несколько дней октября. <div align="center"><img src="/storage/problem-media/65765/problem_65765_...
На доске записаны семь различных нечётных чисел. Таня подсчитала их среднее арифметическое, а Даня упорядочил эти числа по возрастанию и выбрал из них число, оказавшееся посередине. Если из Таниного числа вычесть Данино, то получится число <sup>3</sup>/<sub>7</sub>. Не ошибся ли кто-нибудь из них?
Среднее арифметическое четырёх чисел равно 10. Если вычеркнуть одно из этих чисел, то среднее арифметическое оставшихся трёх увеличится на 1, если вместо этого вычеркнуть другое число, то среднее арифметическое оставшихся чисел увеличится на 2, а если вычеркнуть третье число, то среднее арифметическое оставшихся увеличится на 3. Как изменится среднее арифметическое трёх оставшихся чисел, если вычеркнуть четвёртое число?
Компьютер может производить одну операцию: брать среднее арифметическое двух целых чисел. Даны три числа: <i>m, n</i> и 0, причём <i>m</i> и <i>n</i> не имеют общих делителей и <i>m < n</i>. Докажите, что с помощью компьютера из них можно получить
а) единицу;
б) любое целое число от 1 до <i>n</i>.
Докажите, что три неравенства <img align="MIDDLE" src="/storage/problem-media/30927/problem_30927_img_2.gif"> не могут быть все верны одновременно, если числа<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,<i>a</i><sub>3</sub>,<i>b</i><sub>1</sub>,<i>b</i><sub>2</sub>,<i>b</i><sub>3</sub>положительны.
<i>a, b, c, d</i> – положительные числа. Докажите, что по крайней мере одно из неравенств
1) <i>a + b < c + d</i>;
2) (<i>a + b</i>)<i>cd < ab</i>(<i>c + d</i>);
3) (<i>a + b</i>)(<i>c + d</i>) < <i>ab + cd</i>
неверно.