Олимпиадные задачи по теме «Последовательности» для 8-11 класса - сложность 1 с решениями
Последовательности
НазадБесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.
Последовательность из двух различных чисел продолжили двумя способами: так, чтобы получилась геометрическая прогрессия, и так, чтобы получилась арифметическая прогрессия. При этом третий член геометрической прогрессии совпал с десятым членом арифметической прогрессии. А с каким членом арифметической прогрессии совпал четвёртый член геометрической прогрессии?
Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10?
Чему равна сумма цифр всех чисел от единицы до миллиарда?
На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов —<i>n</i>. Докажите, что общее число клеточек есть квадрат некоторого числа.<table> <tr><td>
_ ||_ ||||_ ||||||_ |||||||_| .....................
||||| ....... ||||| </pre> </td></tr> <tr><td>Рис. 1</td></tr> </table>
Когда Буратино отправился на занятия ВМШ, папа Карло пообещал ему заплатить за первую правильно решенную задачу одну копейку, за вторую - две копейки, за третью - четыре, и т.д. За месяц Буратино получил 655 руб 35 коп. Сколько задач он решил?
<b>Точные квадраты.</b>Доказать, что являются точными квадратами все числа вида 16; 1156; 111556 и т.д. (в середину предыдущего числа вставляется число 15).
На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным?
По кругу записано больше трех натуральных чисел, сумма которых равна 37. Известно, что суммы любых трех последовательных чисел равны между собой. Какие числа написаны по кругу?
На какую цифру оканчивается число 1989<sup>1989</sup>? А на какие цифры оканчиваются числа 1989<sup>1992</sup>, 1992<sup>1989</sup>, 1992<sup>1992</sup>?
Делится ли на 1999 сумма чисел1 + 2 + 3 +...+ 1999?
Замените знаки вопроса соответствующим числом:<div align="center"><img src="/storage/problem-media/87990/problem_87990_img_2.gif"></div>
Доказать, что если целое <i>n</i> > 1, то 1<sup>1</sup>·2²·3³·...·<i>n<sup>n</sup> < n</i><sup><i>n</i>(<i>n</i>+1)/2</sup>.
Докажите следующие свойства функций <i>g<sub>k,l</sub></i>(<i>x</i>) (определения функций <i>g<sub>k,l</sub></i>(<i>x</i>) смотри <a href="https://problems.ru/thes.php?letter=12#gaussa">здесь</a>):
а) <i>g<sub>k,l</sub></i>(<i>x</i>) = <img width="93" height="53" align="MIDDLE" border="0" src="/storage/problem-media/61522/problem_61522_img_2.gif">, где <i>h<sub>m</sub></i>(<i>x</i>) = (1 – <i>x</i>)(1 – <i>x</i>²)...(1 – <i>x<sup>m</sup></i>) (<i>h</i><sub>0</sub>(<i>x</i>) = 1)...
Докажите, что геометрическая прогрессия{<i>a</i><sub>n</sub>} =<i>bx</i><sub>0</sub><sup>n</sup>удовлетворяет соотношению (<a href="https://mirolimp.ru/tasks/161458">11.2</a>) тогда и только тогда, когда<i>x</i><sub>0</sub>-- корень характеристического уравнения (<a href="https://mirolimp.ru/tasks/161458">11.3</a>) последовательности {<i>a</i><sub>n</sub>}.
<i>Определение.</i>Последовательность чисел<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>,...,<i>a</i><sub>n</sub>,..., которая удовлетворяет с заданными<i>p</i>и<i>q</i>соотношению<div><table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"><td align="CENTER"> <i>a</i><sub>n+2</sub>=<i>p</i><i>a</i><sub>n+1</sub>+<i>q</i><i>a</i><sub>n</sub> </td><td> (<i>n</i>=0,1,2,...)</td> <td nowrap width="10" align="RIGHT"> (11.2)</td></tr> </tab...
Найдите последовательность {<i>a</i><sub>n</sub>} такую, что$\Delta$<i>a</i><sub>n</sub>=<i>n</i><sup>2</sup>. Используя результат предыдущей задачи, получите формулу для суммы1<sup>2</sup>+ 2<sup>2</sup>+ 3<sup>2</sup>+...+<i>n</i><sup>2</sup>.
Пусть даны последовательности чисел {<i>a</i><sub>n</sub>} и {<i>b</i><sub>n</sub>}, связанные соотношением$\Delta$<i>b</i><sub>n</sub>=<i>a</i><sub>n</sub>, (<i>n</i>= 1, 2,...). Как связаны частичные суммы<i>S</i><sub>n</sub>последовательности {<i>a</i><sub>n</sub>}<div align="CENTER"> <i>S</i><sub>n</sub> = <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> +...+ <i>a</i><sub>n</sub> </div>с последовательностью {<i>b</i><sub>n</sub>}?
Найдите <table> <tr><td align="LEFT">а) $\Delta$<i>n</i><sup>2</sup>; </td> <td align="LEFT">в) $\Delta$<i>n</i><sup>k</sup>;</td> </tr> <tr><td align="LEFT">б) $\Delta$<i>n</i>(<i>n</i> - 1); </td> <td align="LEFT">д) $\Delta$<i>C</i><sub>n</sub><sup>k</sup>.</td> </tr> </table>
Докажите неравенство для натуральных <i>n</i> > 1: <img align="MIDDLE" src="/storage/problem-media/60304/problem_60304_img_2.gif">
Докажите тождество:${\dfrac{1^2}{1\cdot3}}$+${\dfrac{2^2}{3\cdot5}}$+...+${\dfrac{n^2}{(2n-1)(2n+1)}}$=${\dfrac{n(n+1)}{2(2n+1)}}$.
Докажите тождество: 1<sup>2</sup>+ 3<sup>2</sup>+...+ (2<i>n</i>- 1)<sup>2</sup>=$\displaystyle {\textstyle\frac{1}{3}}$<i>n</i>(2<i>n</i>- 1)(2<i>n</i>+ 1).
Докажите тождество: 1<sup>2</sup>+ 2<sup>2</sup>+...+<i>n</i><sup>2</sup>=$\displaystyle {\textstyle\frac{1}{6}}$<i>n</i>(<i>n</i>+ 1)(2<i>n</i>+ 1).
Докажите тождество: 1 + 3 + 5 +...+ (2<i>n</i>– 1) =<i>n</i><sup>2</sup>.
Величины углов при вершинах <i>A, B, C</i> треугольника <i>ABC</i> составляют арифметическую прогрессию с разностью <sup>π</sup>/<sub>7</sub>. Биссектрисы этого треугольника пересекаются в точке <i>D</i>. Точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> находятся на продолжениях отрезков <i>DA, DB, DC</i> за точки <i>A, B, C</i> соответственно, на одинаковом расстоянии от точки <i>D</i>. Докажите, что величины углов <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> также образуют арифметическую прогрессию. Найдите её...