Олимпиадные задачи по теме «Корни. Степень с рациональным показателем» - сложность 4-5 с решениями
Корни. Степень с рациональным показателем
НазадДокажите, что<i> sin<img src="/storage/problem-media/109838/problem_109838_img_2.gif"><<img src="/storage/problem-media/109838/problem_109838_img_3.gif"> </i>при0<i><x<<img src="/storage/problem-media/109838/problem_109838_img_4.gif"> </i>.
Существуют ли рациональные числа<i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>, удовлетворяющие равенству <div align="CENTER"> (<i>a</i> + <i>b</i>$\displaystyle \sqrt{2}$)<sup>2n</sup> + (<i>c</i> + <i>d</i>$\displaystyle \sqrt{2}$)<sup>2n</sup> = 5 + 4$\displaystyle \sqrt{2}$ </div>(где<i>n</i>— натуральное число)?
Дано:<div align="CENTER"> <i>a</i><sub>1</sub> = 1966, <i>a</i><sub>k</sub> = $\displaystyle \left[\vphantom{\sqrt{a_1+a_2+\dots +a_{k-1}}}\right.$$\displaystyle \sqrt{a_1+a_2+\dots +a_{k-1}}$$\displaystyle \left.\vphantom{\sqrt{a_1+a_2+\dots +a_{k-1}}}\right]$. </div>Найти<i>a</i><sub>1966</sub>.
Дано: $$ a_1=1,a_k=\left[\sqrt{a_1+a_2+\dots +a_{k-1}}\right].$$Найти $a_{1000}$. <b>Примечание.</b> $\left[A\right]$ — целая часть $A$.
Найти действительные корни уравнения:<div align="CENTER"> <i>x</i><sup>2</sup> + 2<i>ax</i> + $\displaystyle {\textstyle\frac{1}{16}}$ = - <i>a</i> + $\displaystyle \sqrt{a^2+x-\frac{1}{16}}$ $\displaystyle \left(\vphantom{0<a<\frac{1}{4}}\right.$0 < <i>a</i> < $\displaystyle {\textstyle\frac{1}{4}}$$\displaystyle \left.\vphantom{0<a<\frac{1}{4}}\right)$. </div>
Вычислите квадратный корень из числа 0,111...111<nobr>(100 единиц)</nobr>с точностью до<nobr>а) 100;</nobr><nobr>б) 101;</nobr><nobr>в)* 200</nobr>знаков после запятой.
Для любых натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i>, никакие два из которых не равны друг другу и ни одно из которых не делится на квадрат натурального числа, большего единицы, а также для любых целых и отличных от нуля целых чисел <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b<sub>m</sub></i> сумма <img align="absmiddle" src="/storage/problem-media/73620/problem_73620_img_2.gif"> не равна нулю. Докажите это.
Докажите, что при всех натуральных<i>n</i>выполняется сравнение[(1 +$\sqrt{2}$)<sup>n</sup>]$\equiv$<i>n</i>(mod 2).
Докажите равенство<div align="CENTER"> $\displaystyle {\frac{2}{\pi}}$ = $\displaystyle \sqrt{\frac{1}{2}}$<sup> . </sup>$\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}}$<sup> . </sup>$\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}}}$... </div>
Докажите, что число$\sqrt{2}$+$\sqrt{3}$+$\sqrt{5}$+$\sqrt{7}$+$\sqrt{11}$+$\sqrt{13}$+$\sqrt{17}$иррационально.
Докажите равенства а)$\sqrt[4]{\dfrac{7+3\sqrt5}{2}}$-$\sqrt[4]{\dfrac{7-3\sqrt5}{2}}$= 1; б)$\sqrt[5]{\dfrac{11+5\sqrt5}{2}}$+$\sqrt[9]{\dfrac{76-34\sqrt5}{2}}$= 1. Найдите общую формулу, для которой данные равенства являются частными случаями.