Задача
Из первых k простых чисел 2, 3, 5, ..., pk (k > 5) составлены всевозможные произведения, в которые каждое из чисел входит не более одного раза (например, 3·5, 3·7·... ·pk, 11 и т. д.). Обозначим сумму всех таких чисел через S. Доказать, что S + 1 разлагается в произведение более 2k простых сомножителей.
Решение
Ясно, что S + 1 = (2 + 1)(3 + 1)...(pk + 1). Сумма в каждой скобке, кроме первой, чётна, поэтому она разлагается по крайней мере на два простых множителя. Несложные вычисления показывают, что при k = 5 число S + 1 разлагается в произведение 11 простых множителей. Поэтому при k > 5 число множителей не меньше чем 11 + 2(k – 5) > 2k.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет