Олимпиадные задачи по математике для 11 класса - сложность 2 с решениями
Стороны $AB$, $BC$, $CD$ и $DA$ четырехугольника $ABCD$ касаются окружности с центром $I$ в точках $K$, $L$, $M$ и $N$ соответственно. На прямой $AI$ выбрана произвольная точка $P$. Прямая $PK$ пересекает прямую $BI$ в точке $Q$. Прямая $QL$ пересекает прямую $CI$ в точке $R$. Прямая $RM$ пересекает прямую $DI$ в точке $S$. Докажите, что точки $P$, $N$ и $S$ лежат на одной прямой.
Через точку внутри треугольника провели три чевианы. Оказалось, что длины шести отрезков, на которые они разбивают стороны треугольника, образуют в каком-то порядке геометрическую прогрессию. Докажите, что длины чевиан тоже образуют геометрическую прогрессию.
Пусть $A_1$, $B_1$, $C_1$ – середины сторон $BC$, $AC$ и $AB$ треугольника $ABC$, $K$ – основание высоты, проведенной из вершины $A$, а $L$ – точка касания вписанной окружности $\gamma$ со стороной $BC$. Описанные окружности треугольников $LKB_1$ и $A_1LC_1$ вторично пересекают прямую $B_1C_1$ в точках $X$ и $Y$ соответственно. Окружность $\gamma$ пересекает эту прямую в точках $Z$ и $T$. Докажите, что $XZ = YT$.
Трапеция с основаниями $AB$ и $CD$ вписана в окружность с центром $O$. Из точки $A$ к описанной окружности треугольника $CDO$ проведены касательные $AP$ и $AQ$. Докажите, что описанная окружность треугольника $APQ$ проходит через середину основания $AB$.
На плоскости даны точки $A$, $B$, $C$ и $D$ общего положения и проходящая через $B$ и $C$ окружность $\omega$. Точка $P$ движется по $\omega$. Обозначим через $Q$ точку пересечения описанных окружностей треугольников $ABP$ и $PCD$, отличную от $P$. Найдите геометрическое место точек $Q$.
Дан прямоугольный треугольник <i>ABC</i>. Пусть <i>M</i> – середина гипотенузы <i>AB, O</i> – центр описанной окружности ω треугольника <i>CMB</i>. Прямая <i>AC</i> вторично пересекает окружность ω в точке <i>K</i>. Прямая <i>KO</i> пересекает описанную окружность треугольника <i>ABC</i> в точке <i>L</i>. Докажите, что прямые <i>AL</i> и <i>KM</i> пересекаются на описанной окружности треугольника <i>ACM</i>.
Дан правильный 4<i>n</i>-угольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>4<i>n</i></sub> площади <i>S</i>, причём <i>n</i> > 1. Найдите площадь четырёхугольника <i>A</i><sub>1</sub><i>A<sub>n</sub>A</i><sub><i>n </i>+1</sub><i>A</i><sub><i>n</i>+2</sub>.