Олимпиадные задачи по математике - сложность 3-5 с решениями
<i>k</i> ≥ 6 – натуральное число. Докажите, что если некоторый многочлен с целыми коэффициентами принимает в <i>k</i> целых точках значения среди чисел от 1 до <i>k</i> – 1, то эти значения равны.
В трёхмерном координатном пространстве рассмотрим множество всех кубов с целочисленными координатами вершин. Докажите, что в этом множестве существует такое бесконечное подмножество $K$, что любые два разных куба из $K$ не имеют параллельных рёбер.
Дан выпуклый четырехугольник $ABCD$ площади $S$. Внутри каждой его стороны отмечено по точке и эти точки последовательно соединены отрезками, так что $ABCD$ разбивается на меньший четырехугольник и $4$ треугольника. Докажите, что хотя бы у одного из этих треугольников площадь не превосходит $\frac{S}{8}$.
Существует ли целое $n>1$, удовлетворяющее неравенству $$[\sqrt{n-2} + 2\sqrt{n+2}] < [\sqrt{9n+6}]?$$ (Здесь $[x]$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
Дана треугольная пирамида $SABC$, основание которой – равносторонний треугольник $ABC$, а все плоские углы при вершине $S$ равны $\alpha$. При каком наименьшем $\alpha$ можно утверждать, что эта пирамида правильная?
Дан многочлен $P(x)$ степени $n>5$ с целыми коэффициентами, имеющий $n$ различных целых корней. Докажите, что многочлен $P(x)+3$ имеет $n$ различных действительных корней.
Даны два взаимно простых числа $p, q$, больших 1 и различающихся больше чем на 1. Докажите, что найдётся натуральное $n$, для которого НОК($p + n, q + n$) < НОК($p, q$).
На окружности расставлено несколько положительных чисел, каждое из которых не больше 1. Докажите, что можно разделить окружность на три дуги так, что суммы чисел на соседних дугах будут отличаться не больше чем на 1. (Если на дуге нет чисел, то сумма на ней считается равной нулю.)
Есть шесть монет, одна из которых фальшивая (она отличается по весу от настоящей, но её вес, как и вес настоящей монеты, неизвестен).
Как за три взвешивания с помощью весов, показывающих общий вес взвешиваемых монет, найти фальшивую монету?
Число <img align="absmiddle" src="/storage/problem-media/64453/problem_64453_img_2.gif"> представили в виде несократимой дроби.
Докажите, что если 3<i>n</i> + 1 – простое число, то числитель получившейся дроби делится на 3<i>n</i> + 1.