Олимпиадные задачи по математике - сложность 2 с решениями
Из бумаги вырезали два одинаковых треугольника <i>ABC</i> и <i>A'B'C'</i> и положили их на стол, перевернув при этом один из треугольников.
Докажите, что середины отрезков <i>AA', BB'</i> и <i>CC'</i> лежат на одной прямой.
В трапеции <i>ABCD</i> на боковой стороне <i>AB</i> дана точка <i>K</i>. Через точку <i>A</i> провели прямую <i>l</i>, параллельную прямой <i>KC</i>, а через точку <i>B</i> – прямую <i>m</i>, параллельную прямой <i>KD</i>. Докажите, что точка пересечения прямых <i>l</i> и <i>m</i> лежит на стороне <i>CD</i>.
Положительные числа <i>a, b, c</i> таковы, что <i>a</i>² + <i>b</i>² – <i>ab = c</i>². Докажите, что (<i>a – c</i>)(<i>b – c</i>) ≤ 0.