Олимпиадные задачи по математике для 7-10 класса
Из бумаги вырезали два одинаковых треугольника <i>ABC</i> и <i>A'B'C'</i> и положили их на стол, перевернув при этом один из треугольников.
Докажите, что середины отрезков <i>AA', BB'</i> и <i>CC'</i> лежат на одной прямой.
В трапеции <i>ABCD</i> на боковой стороне <i>AB</i> дана точка <i>K</i>. Через точку <i>A</i> провели прямую <i>l</i>, параллельную прямой <i>KC</i>, а через точку <i>B</i> – прямую <i>m</i>, параллельную прямой <i>KD</i>. Докажите, что точка пересечения прямых <i>l</i> и <i>m</i> лежит на стороне <i>CD</i>.
Положительные числа <i>a, b, c</i> таковы, что <i>a</i>² + <i>b</i>² – <i>ab = c</i>². Докажите, что (<i>a – c</i>)(<i>b – c</i>) ≤ 0.
Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
а) Докажите, что число её членов меньше 100.
б) Приведите пример такой прогрессии с 72 членами.
в) Докажите, что число членов всякой такой прогрессии не больше 72.