Олимпиадные задачи по математике для 5-8 класса
На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.
На столе лежат две кучки монет. Известно, что суммарный вес монет из первой кучки равен суммарному весу монет из второй кучки, а для каждого натурального числа <i>k</i>, не превосходящего числа монет как в первой, так и во второй кучке, суммарный вес <i>k</i> самых тяжелых монет из первой кучки не больше суммарного веса <i>k</i> самых тяжелых монет из второй кучки. Докажите, что если заменить каждую монету, вес которой не меньше <i>x</i>, на монету веса <i>x</i> (в обеих кучках), то первая кучка монет окажется не легче второй, каково бы ни было положительное число <i>x</i>.
На доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске: первый – знак + или<i> - </i>, второй – одно из натуральных чисел от 1 до 1993. Игроки делают по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой наибольший выигрыш он может себе гарантировать?
Квадратная доска разделена сеткой горизонтальных и вертикальных прямых на <i>n</i>² клеток со стороной 1. При каком наибольшем <i>n</i> можно отметить <i>n</i> клеток так, чтобы каждый прямоугольник площади не менее <i>n</i> со сторонами, идущими по линиям сетки, содержал хотя бы одну отмеченную клетку?
В вершинах куба расставили числа 1², 2², ..., 8² (в каждую из вершин – по одному числу). Для каждого ребра посчитали произведение чисел в его концах. Найдите наибольшую возможную сумму всех этих произведений.