Олимпиадные задачи по математике для 3-9 класса - сложность 2 с решениями
Внутри треугольника <i>ABC</i> взята такая точка <i>O</i>, что ∠<i>ABO</i> = ∠<i>CAO</i>, ∠<i>BAO</i> = ∠<i>BCO</i>, ∠<i>BOC</i> = 90°. Найдите отношение <i>AC</i> : <i>OC</i>.
На доске написано: <i>x</i>³ + ...<i>x</i>² + ...<i>x</i> + ... = 0. Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?
Круглая мишень разбита на 20 секторов, которые нумеруются по кругу в каком-либо порядке числами 1, 2, ..., 20. Если секторы занумерованы, например, в следующем порядке 1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6, 13, 4, 18, то наименьшая из разностей между номерами соседних (по кругу) секторов равна 12 – 9 = 3.
Может ли указанная величина при нумерации в другом порядке быть больше 3?
Каково наибольшее возможное значение этой величины?
Докажите, что если в выпуклом пятиугольнике <i>ABCDE</i> <i>ABC</i> = ∠<i>ADE</i> и ∠<i>AEC</i> = ∠<i>ADB</i>, то ∠<i>BAC</i> = ∠<i>DAE</i>.