Олимпиадная задача по классической комбинаторике: круглая мишень и нумерация секторов (7-11 класс)
Задача
Круглая мишень разбита на 20 секторов, которые нумеруются по кругу в каком-либо порядке числами 1, 2, ..., 20. Если секторы занумерованы, например, в следующем порядке 1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6, 13, 4, 18, то наименьшая из разностей между номерами соседних (по кругу) секторов равна 12 – 9 = 3.
Может ли указанная величина при нумерации в другом порядке быть больше 3?
Каково наибольшее возможное значение этой величины?
Решение
Если секторы занумерованы в следующем порядке: 1, 11, 2, 12, 3, 13, 4, 14, 5, 15, 6, 16, 7, 17, 8, 18, 9, 19, 10, 20, то наименьшая из разностей между соседними номерами равна 9.
Эта величина не может быть больше 9, так как в противном случае при любой нумерации рядом (и слева, и справа) с сектором номер 10 может находиться только сектор с номером 20, что невозможно.
Ответ
Может; 9.
Чтобы оставлять комментарии, войдите или зарегистрируйтесь