Олимпиадные задачи по математике для 10 класса - сложность 1-2 с решениями
Внутри треугольника <i>ABC</i> взята такая точка <i>O</i>, что ∠<i>ABO</i> = ∠<i>CAO</i>, ∠<i>BAO</i> = ∠<i>BCO</i>, ∠<i>BOC</i> = 90°. Найдите отношение <i>AC</i> : <i>OC</i>.
Кривая на плоскости в некоторой системе координат (декартовой) служит графиком функции <i>y</i> = sin <i>x</i>. Может ли та же кривая являться графиком функции <i>y</i> = sin <sup>2</sup><i>x</i> в другой системе координат: если да, то каковы её начало координат и единицы длины на осях (относительно исходных координат и единиц длины)?
Когда из бассейна сливают воду, уровень<i> h </i>воды в нём меняется в зависимости от времени<i> t </i>по закону <center><i>
h</i>(<i>t</i>)<i>=at<sup>2</sup>+bt+c,
</i></center> а в момент<i> t<sub>0</sub> </i>окончания слива выполнены равенства<i> h</i>(<i>t<sub>0</sub></i>)<i>=h'</i>(<i>t<sub>0</sub></i>)<i>=</i>0. За сколько часов вода из бассейна сливается полностью, если за первый час уровень воды в нём уменьшается вдвое?
На доске написано: <i>x</i>³ + ...<i>x</i>² + ...<i>x</i> + ... = 0. Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?