Олимпиадные задачи по математике - сложность 2 с решениями
В клетках доски <i>n×n</i> произвольно расставлены числа от 1 до <i>n</i>². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на <i>n</i> + 1.
Рассматривается выпуклый восьмиугольник. С помощью диагонали от него можно отрезать четырёхугольник, причём это можно сделать восемью способами. Может ли случиться, что среди этих восьми четырёхугольников имеется
а) четыре,
б) пять
таких, в которые можно вписать окружность?
Докажите, что любой треугольник можно разрезать на 2019 четырёхугольников, каждый из которых одновременно вписанный и описанный.
В треугольнике $ABC$ точка $M$ – середина стороны $BC$, точка $E$ лежит внутри стороны $AC$, $BE \geqslant 2AM$. Докажите, что треугольник $ABC$ тупоугольный.
Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами <i>p</i> и <i>q</i>. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно <i>p + q</i>?