Олимпиадные задачи по математике для 11 класса - сложность 3 с решениями

Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел <i>a, b</i>, стоящих в соседних по стороне клетках, хотя бы одно из уравнений  <i>x</i>² – <i>ax + b</i> = 0  и  <i>x</i>² – <i>bx + a</i> = 0  имеет два целых корня?

На отрезке  [0, <i>N</i>]  отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок  [0, <i>N</i>],  целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки <i>A</i> и <i>B</i>, что расстояние между ними кратно 3, то можно разделить отрезок <i>AB</i> на три равных части, отметить одну из точек деления и стереть одну из точек <i>A, B</i>. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка  [0, <i>N</i>]?

Имеется таблица <i>n×n</i>, в  <i>n</i> – 1  клетках которой записаны единицы, а в остальных клетках – нули. С таблицей разрешается проделывать следующую операцию: выбрать клетку, вычесть из числа, стоящего в этой клетке, единицу, а ко всем остальным числам, стоящим в одной строке или в одном столбце с выбранной клеткой, прибавить единицу. Можно ли из этой таблицы с помощью указанных операций получить таблицу, в которой все числа равны?

Приведенные квадратные трёхчлены  <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) принимают отрицательные значения на непересекающихся интервалах.

Докажите, что найдутся такие положительные числа α и β, что для любого действительного <i>x</i> будет выполняться неравенство α<i>f</i>(<i>x</i>) + β<i>g</i>(<i>x</i>) > 0.

Найдите все функции<i> f </i>:<i> <img src="/storage/problem-media/109707/problem_109707_img_2.gif"><img src="/storage/problem-media/109707/problem_109707_img_3.gif"><img src="/storage/problem-media/109707/problem_109707_img_2.gif"> </i>, которые для всех<i> x,y,z<img src="/storage/problem-media/109707/problem_109707_img_4.gif"><img src="/storage/problem-media/109707/problem_109707_img_2.gif"> </i>удовлетворяют неравенству<i> f</i>(<i>x+y</i>)<i>+f</i>(<i>y+z</i>)<i>+f</i>(<i>z+x</i>)<i><img src="/storage/problem-media/109707/problem_109707_img_5.gif"> </i>3<i>f</i&gt...

Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?

Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по ненулевому числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?

Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал сумму чисел, написанных около её строки и её столбца ("таблица сложения"). Какое наибольшее количество сумм в этой таблице могли оказаться рациональными числами?

Глава Монетного двора хочет выпустить монеты 12 номиналов (каждый – в натуральное число рублей) так, чтобы любую сумму от 1 до 6543 рублей можно было заплатить без сдачи, используя не более 8 монет. Сможет ли он это сделать?

(При уплате суммы можно использовать несколько монет одного номинала.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка