Олимпиадные задачи по математике для 11 класса - сложность 2 с решениями
В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?
Приведённый квадратный трёхчлен <i>f</i>(<i>x</i>) имеет два различных корня. Может ли так оказаться, что уравнение <i>f</i>(<i>f</i>(<i>x</i>)) = 0 имеет три различных корня, а уравнение <i>f</i>(<i>f</i>(<i>f</i>(<i>x</i>))) = 0 – семь различных корней?
Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой цифр, что их сумма равна 1999?
Пусть <i>P</i>(<i>x</i>) – многочлен степени <i>n</i> ≥ 2 с неотрицательными коэффициентами, а <i>a, b</i> и <i>c</i> – длины сторон некоторого остроугольного треугольника.
Докажите, что числа <img align="absmiddle" src="/storage/problem-media/66160/problem_66160_img_2.gif"> также являются длинами сторон некоторого остроугольного треугольника.
Назовём натуральное число <i>хорошим</i>, если среди его делителей есть ровно два простых числа.
Могут ли 18 подряд идущих натуральных чисел быть хорошими?